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Computational Psychiatry 

Robb B Rutledge and Rick A Adams 

Introduction. Computational psychiatry is a field that applies methods from computational 
neuroscience to understanding and treating psychiatric disorders. The lack of good animal models for 
psychiatric disorders hinders the development of new treatments, and there remains a wide gap 
between the clinical level operated on by psychiatrists as they evaluate and treat patients and the 
neurobiological level that is the subject of basic research. The goal of computational psychiatry is to 
bridge this gap, developing links between different levels of description and hence a deeper 
understanding of the mechanisms underlying psychiatric disorders. The Global Burden of Disease 
survey reveals that mental illness is an enormous contributor to disability worldwide with 10% of 
Disability-Adjusted Life Years (years of life lost combined with years lived with disability) 
attributable to mental illness. While the number of global Disability-Adjusted Life Years for many 
disorders declined from 1990 to 2010, the number for mental illness increased by 38% over that 
period, and this burden is expected to increase in the future (Murray et al., 2012). In this chapter, we 
review some of the main research areas in computational psychiatry, providing examples of the kind 
of models that are relevant to understanding the behavior of healthy individuals and individuals with 
psychiatric disorders including depression, schizophrenia, and autism. We do not provide an 
exhaustive view, and the interested reader is referred to a number of detailed recent review articles 
that discuss major issues in this emerging field (Adams, Huys, & Roiser, 2015; Corlett & Fletcher, 
2014; Dayan, Dolan, Friston, & Montague, 2015; Huys, Moutoussis, & Williams., 2011; Maia & 
Frank, 2011; Montague, Dolan, Friston, & Dayan, 2012; Stephan & Mathys, 2014; Wang & Krystal, 
2014; Wiecki, Poland, & Frank, 2015). 

Psychiatric disorders are disorders of the brain, but diagnosis relies on symptoms that do not relate 
directly to the underlying mechanisms and provide little information as to the best course of treatment 
for an individual. Two individuals could have the same symptom, like a depressed mood, for entirely 
different reasons. Furthermore, two individuals with fundamentally different symptoms could be 
diagnosed with the same disorder. Diagnoses are descriptive categorizations based, for example, on 
the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). However, interrater 
reliability for the DSM-5 is surprisingly poor, particularly for mood and anxiety disorders (Freedman 
et al., 2013). The National Institute of Mental Health proposed with the Research Domain Criteria 
(RDoC) project to develop a transdimensional classification system that cuts across current diagnostic 
categories. The RDoC project would instead be based on specific behaviors and their underlying 
neural circuits (Cuthbert & Insel, 2013). In this way, future diagnostic systems would reflect current 
research from fields including psychology, neuroscience, and genetics, and would provide a better 
way of understanding symptoms and making treatment decisions. Computational methods can support 
this effort by making the assumptions of theories explicit so that specific predictions can made at 
different levels of descriptions, from the molecular to the behavioral level. Aberrant learning and 
decision making are major features of many psychiatric disorders and much research in computational 
psychiatry has focused on developing mathematical descriptions of learning and decision making for a 
variety of disorders (Huys, Guitart-Masip, Dolan, & Dayan, 2015; Montague et al., 2012). The 
neurobiology underlying learning about rewards is now well understood, and can be described by 
reinforcement learning theory. In this framework, value expectations are updated on the basis of past 
experience and used to make future decisions. Learning from rewards is one hallmark of adaptive 
behavior that may be malfunctioning in psychiatric disorders, and reinforcement learning theory has 
been applied to model behavioral and neural data in many different psychiatric disorders. 

Computational modeling of mood disorders 

Mood disorders including major depressive disorder and bipolar disorder are enormously disruptive 
and carry large costs for society (Simon, 2003). The two major symptoms of depression in the DSM-5 
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are: 1) a depressed mood as indicated by subjective report or the observation of others, and 2) a 
decreased interest or pleasure in most activities (referred to as anhedonia). Dysfunction in the neural 
mechanisms that compute value is proposed to be the source of the aberrant decisions of depressed 
individuals (Huys et al., 2015). Researchers distinguish between model-free and model-based 
valuation mechanisms. Model-free mechanisms learn a direct map between utilities (the subjective 
value of outcomes) and the states and actions that precede them. While model-free learning is 
computationally efficient and converges in stable environments, it is notably inflexible, which can 
lead to errors, particularly in dynamic environments. Model-free learning is thought to be driven by 
reward prediction errors (RPEs) represented by the neurotransmitter dopamine. RPEs are used to 
update value estimates (e.g., if you get more than you expected, expect more next time) and these 
value estimates can be used to improve decision making (Rangel, Camerer, & Montague, 2008). 
Model-based mechanisms learn a model of the environment that captures the probabilistic 
relationships between states, actions, and utilities. These models allow different possible future 
courses of action to be simulated. Such simulations are possible in simple environments but are 
computationally demanding and actual decisions often reflect the influence of both model-free and 
model-based learning. Reinforcement learning models can be used to generate trial-by-trial 
predictions about brain activity that relates to model parameters. Error signals reflecting both model-
free and model-based learning have been measured in the striatum with functional MRI (Daw, 
Gershman, Seymour, Dayan, & Dolan, 2011). Some researchers have suggested that depression might 
be characterized by a reduced ability to learn about rewards and, consistent with that idea, 
neuroimaging studies have found reduced RPE signals in the striatum in depressed subjects (Gradin et 
al., 2011), but often little difference in learning between depressed and control subjects. A meta-
analysis found that depression reduced reward sensitivity, which was related to anhedonia, but did not 
affect the rate of learning (Huys, Pizzagalli, Bogdan, & Dayan, 2013). These results hint that the 
primary cause of depression is not related to a deficit in dopamine-based model-free learning, which 
might explain why dopaminergic drugs are not typically effective antidepressants. 

Selective serotonin reuptake inhibitors (SSRIs) are the most common pharmacological treatment for 
depression, despite little evidence for the commonly held belief that low serotonin levels are linked to 
the low mood of depressed individuals (Cowen & Browning, 2015). Serotonin is linked to the 
processing of aversive stimuli and to punishment-related behavior (Crockett & Cools, 2015). One 
theory is that serotonin acts an aversive counterpart to dopamine, but recent evidence from 
optogenetically identified serotonin neurons in the dorsal raphe finds no evidence for this theory, with 
tonic activity of serotonin neurons representing information about both average reward and average 
punishment (Cohen, Amoroso, & Uchida, 2015). SSRIs lead to rapid positive shifts in how the brain 
responses to emotional stimuli (Harmer et al., 2009). Because SSRIs can take many weeks to have 
antidepressant effects, one possibility is that SSRIs influence emotional responses to events which 
over time leads to an individual learning new and more positive associations. It should be possible to 
support this theory by relating SSRI-induced changes in learning to changes in mood dynamics. 
However, although depression and other mood disorders are evaluated using subjective measures, the 
subjective feelings related to mood are poorly understood. If emotions are important for adaptive 
behavior, the subjective feelings associated with emotions should reflect the activity of the same 
neural circuits that underlie reinforcement learning and valuation mechanisms. Modeling of mood 
dynamics may provide useful insights into the dysfunction present in some psychiatric disorders. 

The function of mood and its relation to behavior 

Subjective conscious experience is colored by affective states like mood. Unlike emotions, moods can 
be long lasting and need not have a single cause. As such, the study of mood dynamics may be 
particularly amenable to the use of computational models, which can attempt to dissociate the many 
influences on mood. Experience-sampling methods have been used to probe affective states as 
participants go about their daily lives (Csikszentmihalyi & Larson, 1987; Killingsworth & Gilbert, 
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2010). These methods have recently been adapted to examine momentary changes in happiness (a 
proxy for mood) during a value-based decision-making task (Brown et al., 2014; Rutledge, Skandali, 
Dayan, & Dolan, 2014). Subjects made choices between safe and risky options, gaining and losing 
small amounts of money, and were asked periodically ‘How happy are you at this moment?’ 
Happiness fluctuated throughout the task (Figure 1) and depended on RPEs, the difference between 
experienced and predicted outcomes. The dynamics of happiness were captured by the following 
model: 

Happiness t = w! + w! γ!!!
!

!!!

CR! + w! γ!!!
!

!!!

EV! + w! γ!!!
!

!!!

RPE! 

where t is trial number, w0 is a baseline parameter, and other weights w capture the influence of 
different event types. The forgetting factor 0≤γ≤1 is such that more recent events have a larger impact 
than earlier trials. Experienced and predicted rewards were reflected in CR, EV, and RPE variables: 
CRj is the certain reward if chosen on trial j, EVj is the expected value or average return for the risky 
option if chosen on trial j, and RPEj is the RPE on trial j if the risky choice was chosen. Weights for 
CR, EV, and RPE variables were significantly positive at the group level in multiple lab-based and 
smartphone-based (n=18,420) experiments (Rutledge et al., 2014). Forgetting factors were such that 
events that occurred more than 10 trials ago had essentially no impact on happiness. In summary, 
recent rewards and expectations both impacted happiness. Happiness depended not on how well 
subjects were doing in the task, but instead whether they were doing better than expected. Blood-
oxygen-level dependent (BOLD) activity in the ventral striatum during task events was correlated 
with subsequent happiness ratings (Figure 1B). This brain area is a major target for dopamine neurons 
known to represent RPEs (Hart, Rutledge, Glimcher, & Phillips, 2014; Schultz, Dayan, & Montague, 
1997) and dopamine activity is linked to BOLD activity (Knutson & Gibbs, 2007) also known to 
represent RPEs (Caplin, Dean, Glimcher, & Rutledge, 2010; Rutledge, Dean, Caplin, & Glimcher, 
2010). Optogenetic stimulation of dopamine neurons leads to BOLD activity in the striatum and this 
activity is eliminated if D1 and D2 receptors are blocked (Ferenczi et al., 2016). A pharmacological 
study using a similar paradigm demonstrated that boosting dopamine levels increased the happiness 
that resulted from small rewards, consistent with the possibility that dopamine contributes to the link 
between rewards and mood (Rutledge, Skandali, Dayan, & Dolan, 2015). 

Mood has been shown to bias perception of both potential and experienced rewards. When subjects 
are in a good mood, the impact of rewards on future choices is greater than when subjects are in a bad 
mood (Eldar & Niv, 2015). Subjects played two sets of slot machines with similar reward 
probabilities before and after a wheel-of-fortune draw for $7. Subjects who won the draw, and for 
whom mood improved, preferred the second set of slot machines, consistent with rewards from those 
machines being perceived as better when subjects were in a good mood. Subjects who lost the draw 
preferred the first set of slot machines, the ones they played before the draw. Furthermore, BOLD 
responses to rewards from the second set of slot machines were higher in subjects in a good mood 
compared to subjects in a bad mood. These results are consistent with a link between depression and a 
reduced impact of rewards on subsequent behavior (Dombrovski et al., 2013; Vrieze et al., 2013). 
Positive mood increased risk taking in the lab (Isen & Patrick, 1983) and unexpected positive 
outcomes outside of the laboratory (unexpected sports team wins and unexpected sunny days) 
increased real-world gambling (Otto, Fleming, & Glimcher, 2016). These results suggest that changes 
in mood resulting from one stimulus can influence judgements about potentially unrelated stimuli. 

The adaptive function of mood remains unknown but one theory is that mood represents the 
momentum of reward, and this quantity (whether an environment is getting better or worse) can 
improve learning in changing environments (Eldar, Rutledge, Dolan, & Niv, 2016). Reinforcement 
learning algorithms allow agents to learn about the environment and to determine which actions are 
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most likely to lead to reward. However, an inefficiency may arise when there are correlations between 
rewards in different states, as is often the case in the real world. For example, rain may cause fruit to 
grow on all trees at the same time, and snow may reduce the availability of food everywhere. A 
foraging animal that finds several unexpected fruits in one tree will have an improved mood as a 
result of these positive RPEs and will quickly update value estimates for nearby trees after also 
finding fruits there. The expectations that animals have then reflects not only their recent history with 
a particular tree, but recent changes in the overall availability of reward in the environment. Negative 
momentum in the environment and the resulting low mood would lead to rewards being perceived as 
worse than they are, allowing expectations to quickly be adjusted downward when the environment 
gets worse (e.g., winter is coming). 

According to this theory, mood increases the efficiency of learning if the duration and intensity of 
moods are appropriate. Even after major life events (e.g., winning the lottery), expectations should be 
updated so that surprises do not continue indefinitely. Happiness does eventually return to baseline 
levels after major life events (Brickman, Coates, & Janoff-Bulman, 1978; Lykken & Tellegen, 1996). 
Problems can arise when mood persists. If a positive mood persists, rewards are perceived as better 
than they are, and positive-feedback dynamics lead to overly high expectations. When mood 
eventually stabilizes, optimistic expectations lead to a high number of negative surprises, resulting in 
a low mood and further positive-feedback dynamics that lead to pessimistic expectations. Such mood 
cycles are present in individuals suffering from bipolar disorder even in a stable environment. Another 
theory is that mood plays an important role in the pursuit of goals by reflecting error signals in 
progress toward goals and away from threats (Carver, 2015). According to this theory, a low mood 
should lead to increased effort and a high mood should lead to decreased effort and switching to new 
goals. Consistent with this theory, healthy individuals but not individuals with bipolar disorder do 
decrease effort after unexpected positive progress toward goals (Fulford, Johnson, Llabre, & Carver, 
2010). Although theories about the function of mood are based largely on work in healthy individuals, 
they may allow predictions to be made about the dynamics of mood, learning, and behavior in 
psychiatric disorders which can be tested by researchers in computational psychiatry. Computational 
models of subjective feelings may also be useful for understanding a variety of psychiatric disorders. 
For example, one possibility is that anxiety reflects the momentum of aversive outcomes, but it is 
unknown how feelings of anxiety quantitatively relate to an individual’s history of aversive events or 
to subsequent behaviour (although see (Browning, Behrens, Jocham, O’Reilly, & Bishop, 2015)). 

Bayesian inference and hierarchical models 

The brain’s major task is to infer the state of the world and to use that inference to make decisions. 
However, neither the brain’s sensory data nor its prior knowledge is completely reliable. The optimal 
combination of these different sources of uncertain information is given by Bayes’ theorem, in which 
a ‘prior’ (the initial expectation of the state of the environment) is combined with a ‘likelihood’ (the 
probability of the sensory input, given that expectation), each weighted by its precision (inverse 
variance), to compute a ‘posterior’ (an updated estimation of the state of the environment).  

The brain’s prior beliefs can respect the hierarchical structure of the world and of its sensory data if 
they take the form of a hierarchical model. Hierarchical generative models can use predictive coding 
to infer the causes of low-level sensory data by exploiting their high-level descriptions (Friston, 2008; 
Rao & Ballard, 1999). In predictive coding, a unit at a given hierarchical level sends messages to units 
at lower levels which predict the activity of those lower units; discrepancies between these predictions 
and the actual input to those lower units are then passed back up the hierarchy in the form of 
prediction errors. Prediction errors revise the higher-level predictions, and this hierarchical message 
passing continues in an iterative fashion.  

Exactly which predictions ought to be changed in order to explain away a given prediction error is a 
crucial question for hierarchical models. An approximately Bayesian solution to this problem is to 
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make the biggest updates to the level in the hierarchy whose uncertainty is greatest relative to the 
uncertainty of incoming data at the level below (i.e. if you are very uncertain about your beliefs, but 
your source is very reliable, you should change your beliefs a lot) (Mathys, Daunizeau, Friston, & 
Stephan, 2011). 

A classic experiment illustrates hierarchical inference. Imagine you are shown two jars of beads: one 
contains 85% green and 15% red beads, the other 85% red and 15% green. The jars are hidden and a 
sequence of beads is drawn with replacement: GGRGGRRRRRGGGRGGGGGGRGGGG. From this 
sequence it appears that the jar being drawn from changes from one that is predominantly green (5 
draws), to predominantly red (5 draws), to predominantly green (remaining sequence). Now suppose 
that although the real proportions are 85% and 15%, a malicious experimenter did not show you the 
jars and misleadingly told you that the proportions are 99% and 1%. You might reasonably conclude 
that the jar the beads were being drawn from had actually changed eight times – whenever the color 
changed.  

This is what happens when the precision at the bottom of a hierarchical model is too high relative to 
the precision at the top. Following a sensory prediction error, the model concludes there must have 
been a change in the environment, rather than ‘putting it down to chance’. This precision imbalance 
might contribute to various phenomena observed in schizophrenia.  

Schizophrenia, precision, and inference  

We now explore how neurobiological abnormalities in schizophrenia might be characterized in 
computational terms, and how these characterisations might help us understand the disorder (Adams 
et al., 2015). We discuss reductions in synaptic gain in higher areas in the hierarchy, the notion of 
aberrant salience, and probabilistic inference. Other excellent reviews explore these subjects in more 
detail (e.g., reinforcement learning models and schizophrenia (Corlett & Fletcher, 2014; Deserno, 
Boehme, Heinz, & Schlagenhauf, 2013), models of negative symptoms (e.g. apathy) (Strauss, Waltz, 
& Gold, 2014), and biophysical models (Cohen, Braver, & O’Reilly, 1996; Wang & Krystal, 2014)). 

What are the main cortical abnormalities in schizophrenia and what do they have in common (Adams, 
Stephan, Brown, Frith, & Friston, 2013)? One key abnormality is thought to be hypofunction of the 
N-methyl-D-aspartate receptor (NMDA-R), a glutamate receptor with profound effects on both 
synaptic gain (due to its prolonged opening time) and synaptic plasticity (via long term potentiation or 
depression) in both the prefrontal cortex and hippocampus. Synaptic gain (or short-term synaptic 
plasticity (Stephan, Baldeweg, & Friston, 2006)) refers to a multiplicative change in the influence of 
presynaptic input on postsynaptic responses. A second abnormality is the reduced synthesis of γ-
aminobutyric acid (GABA) by inhibitory interneurons in prefrontal cortex. A third is the 
hypoactivation of D1 receptors in prefrontal cortex (we shall discuss striatal hyperactivation of D2 
receptors in the next section). 

These abnormalities could all reduce synaptic gain in prefrontal cortex or hippocampus, which are 
positioned near the top of the cortical hierarchy. NMDA-R hypofunction and D1 receptor hypoactivity 
are most easily related to a change in synaptic gain. Similarly, a GABAergic deficit might cause a loss 
of ‘synchronous’ gain: sustained oscillations in neuronal populations are facilitated through their 
rhythmic inhibition by GABAergic interneurons, putatively increasing communication between 
neurons that oscillate in phase (Fries, 2005). 

How can synaptic gain (and its loss) be understood in computational terms? One answer rests on the 
idea that the brain approximates and simplifies Bayesian inference by using probability distributions 
that can be encoded by a few ‘sufficient statistics’ (e.g., the mean and its precision). Whilst precision 
determines the influence one piece of information has over another in Bayesian inference, synaptic 
gain determines the influence one neural population has over another in neural message passing. The 
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neurobiological substrate of precision could therefore be synaptic gain (Feldman & Friston, 2010), 
and a loss of synaptic gain in a given area could reduce the precision of information encoded there. 

A loss of synaptic gain in prefrontal cortex or hippocampus would reduce the influence of their inputs 
on lower-level areas. In the brain’s hierarchical model, this would correspond to a loss of influence 
(i.e., precision) of the model’s priors over the sensory data. This simple computational change (i.e. a 
loss of precision of prior beliefs or a relative increase in the precision of sensory data) can describe a 
great variety of phenomena in schizophrenia (see Figure 2; more references and predictive coding 
simulations of some of these phenomena are elsewhere (Adams et al., 2013)): 

• At a neurophysiological level, responses to predictable stimuli resemble responses to 
unpredicted stimuli, and vice versa, in perceptual electrophysiology experiments (e.g., the 
P50 or P300 responses to tones (Turetsky et al., 2007));  

• At a network level, higher regions of cortex (i.e. prefrontal cortex and hippocampus) have 
diminished connectivity to the thalamus subjects with schizophrenia relative to control 
subjects, whereas primary sensory areas are coupled more strongly with the thalamus 
(Anticevic et al., 2014); 

• At a perceptual level, a greater resistance to visual illusions (Silverstein & Keane, 2011) 
(which exploit the effects of visual priors on ambiguous images, for example the famous 
“hollow-mask” illusion (Dima et al., 2009)) and a failure to attenuate the sensory 
consequences of one’s own actions, which could diminish one’s sense of agency (Shergill, 
Samson, Bays, Frith, & Wolpert, 2005); 

• At a behavioral level, impaired smooth visual pursuit of a predictably moving target, but 
improved tracking of a sudden unpredictable change in a target’s motion (Hong et al., 2008). 

Another way of modeling the effects of NMDA-R hypofunction is to use a biophysical model that 
contains specific parameters for receptor conductances using, for example, a spiking neural network 
model of spatial working memory (Murray et al., 2014). If NMDA-R conductance between pyramidal 
cells and interneurons is reduced in this model there is a loss of precision of the spatial location over 
time. This predicts an increase in false alarms to local distractors in a spatial working memory task, 
but no change in the number of missed trials. These effects are observed in healthy subjects given 
ketamine (an NMDA-R antagonist) and are similar to those found in schizophrenia (Mayer & Park, 
2012). 

How do these ideas relate to the symptoms of psychosis? A reasonable hypothesis would be that a loss 
of high-level precision might result in diffuse generalized cognitive problems (as routinely found in 
schizophrenia) and over-attention to sensory stimuli (as found in the ‘delusional mood’ (Corlett & 
Fletcher, 2014) and also in autism), and overadjustments of beliefs following chance events. 
However, one might expect that these belief updates should be fleeting (as they would be vulnerable 
to rapid updating) unlike delusions. It may therefore be that the permanence of delusions reflects other 
abnormal learning mechanisms in prefrontal cortex or striatum (discussed elsewhere (Adams et al., 
2015)).  

Aberrant salience and psychosis. 

The best-established neurobiological abnormality in schizophrenia is an increased presynaptic 
availability of dopamine in the associative striatum that correlates with positive symptoms (Howes & 
Kapur, 2009). Kapur proposed that this hyperdopaminergia causes a state of ‘aberrant salience’, in 
which perception of external stimuli and ‘internal’ thoughts could take on undue significance, due to 
an increased stimulus-independent release of dopamine (Kapur, 2003). The stimuli or thoughts 
themselves could be quite innocuous (e.g., a street light turning on, or wondering if one should buy 
some food) but the experience of salience coincident with the stimulus would drive the subject to seek 
(often delusional) explanations, such as, “That light turning on means I am the Son of God”. The 
aberrant salience hypothesis was based on the theory of incentive salience, which proposes that 
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dopaminergic activity gives motivational impetus to act on stimuli whose values have already been 
learned (Berridge, 2007). 

To test Kapur’s hypothesis, Roiser developed the Salience Attribution Test, which assesses the extent 
to which subjects explicitly (consciously) learn associations between stimulus attributes and outcomes 
(some attributes are predictive of outcomes but some are not), and the extent to which reaction times 
are affected by the same attributes. The Salience Attribution Test thus assesses both explicit learning 
and implicit motivation. Both medicated (Roiser et al., 2009) and unmedicated (Roiser, Howes, 
Chaddock, Joyce,, & McGuire, 2013) prodromal schizophrenic subjects showed greater aberrant 
salience in the explicit rather than implicit measures and the former related to their delusions or 
abnormal thoughts. Although others have found aberrant motivational salience abnormalities in 
schizophrenia (Pankow et al., 2015), the most consistent finding in patients is a loss of adaptive 
motivational salience: reaction times do not decrease to rewarding stimuli, as they do in control 
subjects (Smieskova et al., 2015). 

Overall, it seems that abnormal motivational salience may exist in schizophrenia, but it is less clear 
that this could be a cause of positive symptoms such as delusions and, in particular, hallucinations. 
Aberrant motivational salience may work best as an account of manic psychosis, in which the subject 
is energized and perceives events in a positive light, rather than schizophrenic psychosis, which is 
often aversive in nature. Conversely, diminished adaptive motivational salience provides a plausible 
explanation for negative symptoms. 

What other kinds of salience might be abnormal in schizophrenia, and how might they be cast in 
computational terms? Some possibilities, all proposed to relate to striatal dopamine release 
(Schwartenbeck, FitzGerald, & Dolan, 2016; Winton-Brown, Fusar-Poli, Ungless, & Howes, 2014), 
are: 

• Reward and aversive prediction error. While many dopamine neurons are phasically active in 
response to unexpected rewards, others are active following unexpected aversive events, and 
some are active after both, and so have been said to represent a salience signal. However, in 
the Rescorla-Wagner model of conditioning, salience refers not to the absolute value of the 
error  (r−V )  but to the associability  αCSi  of the conditioned stimulus property with the 

value update (with learning rate  β ):   ΔVCSi =αCSiβ(r−V ) . In more sophisticated models of 

belief updating, static  α  and  β  parameters are replaced by dynamic precision estimates to 
give precision-weighted prediction errors (Mathys et al., 2011). Thus aberrant salience may 
be cast as aberrant precision-weighting. 
  

• Surprise or novelty signals. Surprise and novelty are often conflated but are fundamentally 
different. They are computed by comparing the current event with one’s expectation or 
memory, respectively (Barto, Mirolli, & Baldassarre, 2013). In information theory, ‘surprisal’ 
is the negative log probability of an event. For observation o  and model m  with parameters 
 θ  this corresponds to . Aberrant novelty or surprisal signaling could lead to attentional 
problems but a direct link to delusions is not intuitive, as aberrantly novel or surprising events 
need not cause aberrant learning. 
 

• Informational salience. Bayesian surprise is formalized as the information used to transform a 
prior into a posterior distribution (Itti & Baldi, 2009); i.e. the Kullback-Leibler divergence 
between these distributions following an observation:  KL[p(θ | o,m) || p(θ |m)] . 
Informational salience, or the ‘epistemic value’ of observations (Friston et al., 2015), is a 
promising candidate for the kind of salience one might expect to be aberrant in schizophrenia, 
as it heralds not just surprising observations, but also shifts in beliefs (Schwartenbeck et al., 
2016). 
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Of these accounts, only reinforcement learning has been explored in any depth in schizophrenia 
(Deserno et al., 2013). One well-replicated abnormality is a reduction in neural activity in the ventral 
striatum during RPE signaling and reward anticipation in schizophrenia that correlates with negative 
symptoms (Juckel et al., 2006). However, despite abnormal neuroimaging results, behavior is often 
similar to that of controls (Murray, Corlett, & Fletcher, 2010). Indeed, reinforcement learning models 
serve best as explanations of negative symptoms (Strauss et al., 2014), including pronounced 
asymmetry in learning (that is, a failure to learn stimulus-reward associations but intact learning of 
stimulus-punishment associations), failure to infer the values of actions (cf. anhedonia in depression), 
greater discounting of rewards that require effort (Hartmann et al., 2015), and a loss of uncertainty-
driven exploration such that valuable states are never discovered. One important caveat here is the 
recent finding that when working memory is incorporated into a reinforcement learning model, 
patients with schizophrenia only showed deficits in working memory parameters and not parameters 
related to reinforcement learning (Collins, Brown, Gold, Waltz, & Frank, 2014). 

Probabilistic reasoning in schizophrenia. 

The most widely used test of probabilistic inference in schizophrenia is the beads task, in which the 
subject has to guess which of two jars a sequence of red and green beads is coming from: the ‘red’ jar 
containing mostly red and some green beads, or the ‘green’ jar containing the reverse distribution. The 
task has two popular variants: in the ‘draws to decision’ version, the subject stops the sequence when 
sure of the color of the jar, and the number of beads seen is recorded. In the ‘probability estimates’ 
version, the subject sees a long sequence of beads drawn from one jar (with or without a change of jar 
at some point) and has to estimate the probability of either jar being the source after every bead. 

In a well-replicated finding, around half of subjects with schizophrenia decide on the jar color (in the 
draws to decision task) after seeing only one or two beads, a so-called jumping-to-conclusions bias 
(Fine, Gardner, Craigie, & Gold, 2007). This has been interpreted as the effect of overweighting 
evidence, i.e. making larger updates to beliefs than are warranted by the data. This explanation is 
unlikely to be the whole reason for the effect, however, as any increased belief updating in the 
probability estimates version is of relatively small magnitude (Fine et al., 2007), and in a related 
paradigm, schizophrenic subjects learn less from positive feedback than controls, especially those 
subjects that jump to conclusions (Averbeck, Evans, Chouhan, Bristow, & Shergill, 2010). 

Other possible but underexplored explanations for the jumping-to-conclusions bias are that 
schizophrenic subjects care less about making an incorrect decision, or that they are more reluctant to 
ask for another bead, or have greater stochasticity in their decision process. A computational model 
that incorporated the costs of sampling and wrong decisions and included a stochasticity (softmax) 
parameter  τ  revealed that only a higher  τ  accounted for the early decisions made by schizophrenic 
subjects in the draws to decision task (Moutoussis, Bentall, El-Deredy, & Dayan, 2011). This could 
reflect a loss of synaptic gain (i.e., precision encoding) in prefrontal cortex or the striatum 
(FitzGerald, Schwartenbeck, Moutoussis, Dolan, & Friston, 2015). 

Overall, while much progress has been made, we are far from a complete computational account of 
delusions. Many delusions arise too quickly to be explained using incremental belief updating, and 
others seem to come from memory. It is also unclear how delusions become so persistent (Adams et 
al., 2015). Furthermore, computational accounts will not be complete until they also cover their 
distinctive themes (e.g., persecution, grandiosity, self-reference, etc.). 

Computational phenotyping using social games 

An important aspect of human cognition is the ability to model and understand the behavior of other 
humans (Saxe & Kanwisher, 2003). This ability plays an important role in both cooperation and 
competition and may be affected in a range of psychiatric disorders including autism spectrum 
disorder (ASD), borderline personality disorder (BPD), schizophrenia, and depression. Social games 
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with multiple interacting agents permit computational modeling and neuroimaging of inter-personal 
exchange to characterize social interactions. Using computational models, behavioral and neural 
parameters can be estimated that might allow computational phenotyping (Montague et al., 2012), 
whereby subjects are categorized according to inter-individual differences in the computational 
mechanisms that underlie, for example, their social interactions. 

One of the most popular tasks for studying the neural mechanisms that underlie human interactions is 
the trust game (Ruff & Fehr, 2014). In a typical experiment, subjects play ten rounds of the trust game 
with the same partner. In each round, the investor is endowed with some money and decides how 
much of that endowment to entrust to the trustee. Any money received by the trustee from the investor 
is tripled, and the trustee then decides how much to return to the investor. In this way, cooperation is 
desirable for both players, and investors should invest if they can expect trustees to return money. 
Players able to make inferences about the likely mental state of their partner should have an advantage 
in maximizing earnings. When subjects that suffer from BPD play the multi-round trust game with 
healthy participants, BPD subjects are unable to maintain cooperation (King-Casas et al., 2008). 
Neural activity in the anterior insula, a region often found to respond to norm violations (Xiang, 
Lohrenz, & Montague, 2013), differed between BPD and healthy players. In healthy trustees, insula 
activity was highest when investors made small offers. Insula activity in BPD trustees did not reflect 
the size of investor offers, and this dysfunction in neural responses to partner decisions may explain 
the difficulty of BPD subjects to develop trust with social partners. In ASD trustees playing a trust 
game with healthy investors, neural activity in the cingulate cortex was lower than in healthy trustees 
both when investor decisions were revealed and when trustee repayment decisions were made (Chiu 
et al., 2008), and this signal has been linked to the ability to model one’s own social intentions, an 
important capacity for social interaction. 

Computational models of social behavior provide trial-by-trial predictions of task variables that 
depend on individual model parameters. These predictions can be used to probe the neural 
mechanisms that underlie differences present in psychiatric disorders. For example, trust game 
decisions can be fitted to a computational model that produces an estimate of a player’s depth-of-
thought, which captures the richness of the models a player builds about a partner (Xiang, Ray, 
Lohrenz, Dayan, & Montague, 2012). A level 0 subject does not simulate partner choices. A level 1 
subject assumes a level 0 partner and simulates partner choices accordingly. A level 2 subject assumes 
a level 1 partner and simulates accordingly. Applying this model to data from healthy investors 
playing games anonymously with either healthy trustees or BPD trustees revealed that the depth-of-
thought of healthy investors was level 0 less than 20% of the time when playing with healthy trustees 
but level 0 more than 60% of the time when playing with BPD trustees. This finding indicates that 
although healthy subjects are capable of simulating partner choices, cooperation breaks down when 
playing with BPD trustees as revealed by computational models. Healthy investor behavior 
distinguishes not only between BPD and healthy trustees but also between anonymous trustees with a 
variety of psychiatric diagnoses including BPD, ASD, attention deficit hyperactivity disorder, and 
depression, leading to the suggestion that healthy individuals might act as a sort of “biosensor” in 
social games and can help to identify the important differences between patient groups (Koshelev, 
Lohrenz, Vannucci, & Montague, 2010). 

Summary 

Computational psychiatry aims to develop mathematical models that are useful for understanding 
psychiatric disorders and for bridging the gap between clinical practice and basic neuroscience 
research. New models will capture dysfunction in a way that allows current clinical definitions of 
psychiatric disorders to be updated with definitions that map more closely to the neural circuits that 
perform the aberrant computations. Much research focuses on the aberrant decision making present in 
many psychiatric disorders. We have described several different computational approaches to the 
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study of psychiatric disorders, providing examples of research related to features of depression, 
schizophrenia, borderline personality disorder, and autism spectrum disorder. The global burden of 
mental illness is expected to increase, but few novel treatments for psychiatric disorders have been 
introduced in recent years. The hope of computational psychiatry is that models will link specific 
behaviors to specific activity in neural circuits, providing new insights that facilitate the development 
of new treatments for psychiatric disorders. 
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Figure 1: Computational modeling of mood and its relation to neural activity. A) Subjects 
participating in a probabilistic reward task answered the question ‘How happy are you at this 
moment?’ after every 2-3 trials. Happiness (as a proxy for mood) for two example subjects fluctuated 
over the course of the experiment. A computational model of mood dynamics accounted for 
subjective ratings using the recent history of rewards and expectations. Happiness depends not on how 
well subjects were doing in the task, but in whether they were doing better than expected. B) Blood 
oxygen levels measured with functional MRI revealed that activity during task events was correlated 
with subsequent happiness ratings, consistent with the possibility that neural activity in this region, 
the ventral striatum, relates to changes in mood. Because activity in this area is linked to dopamine, 
one possibility, supported by pharmacological research, is that dopamine plays a role in determining 
mood. Figure adapted from (Rutledge et al., 2014). 
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Figure 2: Effects of a hierarchical precision imbalance in schizophrenia. A loss of precision 
encoding in higher hierarchical areas would bias inference away from prior beliefs and toward 
sensory evidence, illustrated schematically in the middle panel. This single change could manifest in 
many ways (moving anticlockwise from left to right). A) A loss of the ability to smoothly pursue a 
target moving predictably. The eye position of this subject with schizophrenia frequently falls behind 
the target and has to saccade to catch up again. When the target is briefly stabilized on the retina (to 
reveal the purely predictive element of pursuit), shown as the red unbroken line, eye velocity drops 
significantly (figure adapted from (Hong et al., 2008)). B) These graphs illustrate average 
electrophysiological responses in a mismatch negativity paradigm, in which a deviant oddball tone 
follows a series of identical tones. In the control subject, the oddball causes a pronounced negative 
deflection at around 120 ms (blue circle), but in a subject with schizophrenia, there is no such 
deflection (red circle) and neural responses to predictable and unpredictable stimuli are similar (figure 
adapted from (Turetsky et al., 2007)). C) The physiological change underlying the precision 
imbalance is a relative decrease in synaptic gain in higher hierarchical areas, and a relative increase in 
lower hierarchical areas. This change would also manifest as an alteration in connectivity, shown here 
as whole brain differences in connectivity with a thalamic seed between controls and subjects with 
schizophrenia. Red/yellow areas are more strongly coupled in subjects with schizophrenia, and 
include sensory areas (auditory, visual, motor, and somatosensory). Blue areas are more weakly 
coupled, and include higher hierarchical areas (medial and lateral prefrontal cortex, cingulate cortex, 
and hippocampus) and the striatum (figure adapted from (Anticevic et al., 2014)). D) An imbalance in 
hierarchical precision may lead to a failure to attenuate the sensory consequences of one’s own 
actions (Shergill et al., 2005), here illustrated with the force-matching paradigm used to measure this 
effect. The subject must match a target force by either pressing on a bar with their finger (below) or 
using a mechanical transducer (top). Control subjects exert more force than necessary in the former 
condition, but schizophrenic subjects do not (figure adapted from (Pareés et al., 2014)). E) A loss of 
the precision of prior beliefs can cause a resistance to visual illusions that rely on prior beliefs for 
their perceptual effects. Control subjects perceive the face on the right as a convex face lit from 
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below, due to a powerful prior belief that faces are convex, whereas subjects with schizophrenia tend 
to perceive the image veridically as a concave hollow face lit from above. Figure reproduced from 
(Adams et al., 2015).  

 


