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Abstract

How organisms learn the value of single stimuli through experience is well described. In many decisions, however, value estimates are computed
‘on the fly’, by combining multiple stimulus attributes. The neural basis of this computation is poorly understood. Here we explore a common
scenario in which decision-makers must combine information about quality and quantity to determine the best option. Using fMRI, we examined
the neural representation of quality, quantity, and their integration into an integrated subjective value signal in humans of both genders. We found
that activity within Inferior Frontal Gyrus (IFG) correlated with offer quality, whilst activity in the Intra Parietal Sulcus (IPS) specifically correlated
with offer quantity. Several brain regions, including the Anterior Cingulate Cortex (ACC), were sensitive to an interaction of quality and quantity.
However, the ACC was uniquely activated by quality, quantity, and their interaction, suggesting this region provides a substrate for flexible
computation of value from both quality and quantity. Furthermore, ACC signals across subjects correlated with the strength of quality and quantity
signals in IFG and IPS respectively. ACC tracking of subjective value also correlated with choice predictability. Finally, activity in the ACC was

elevated for choice trials, suggesting that ACC provides a nexus for the computation of subjective value in multi-attribute decision making.
Significance Statement

Would you prefer 3 apples or 2 oranges? Many choices we make each day require us to weigh up the quality and quantity of different outcomes.
Using fMRI, we show that option quality is selectively represented in the Inferior Frontal Gyrus (IFG), whilst option quantity correlates with areas of
the Intra Parietal Sulcus (IPS) which have previously been associated with numerical processing. We show that information about the two is
integrated into a value signal in the Anterior Cingulate Cortex (ACC), and the fidelity of this integration predicts choice predictability. Our results

demonstrate how on-the-fly value estimates are computed from multiple attributes in human value-based decision making.
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Introduction

Convergent evidence from human fMRI (0'Doherty et al. 2001; Montague and Berns 2002; Kable and Glimcher 2007; Knutson et al. 2007; FitzGerald
etal. 2009; Levy et al. 2011) and non-human primate recordings (Schultz et al. 1997; Padoa-Schioppa and Assad 2006; Hayden et al. 2011;
Kennerley et al. 2011; Padoa-Schioppa and Schoenbaum 2015) suggest that neural representations of subjective value are present in a wide variety
of brain areas, potentially represented in an automatic fashion invariant to the task at hand (Lebreton et al. 2009; Grueschow et al. 2015). These
value estimates are thought to provide input to value-comparison mechanisms to enable an appropriate decision between options (Padoa-
Schioppa and Assad 2006; 2008; Padoa-Schioppa 2011; Xie and Padoa-Schioppa 2016), a process variously characterized as evidence accumulation
(Krajbich et al. 2010; De Martino et al. 2013; Polania et al. 2014) or mutually inhibitory competition (Wang 2008; Hunt et al. 2012; Chau et al.
2014). Representations of stimulus value also plays a crucial role in reinforcement learning, where discrepancies between experienced and
expected values give rise to the prediction errors that drive learning (Schultz et al. 1997; Sutton and Barto 1998; Pessiglione et al. 2006; Rutledge et

al. 2010; Kahnt et al. 2011).

Despite abundant and consistent evidence for value representations in specific brain areas, we still know little about how they come about and are
integrated across multiple attributes. Efforts to isolate value signals within a neuroeconomic framework have used carefully controlled stimulus
characteristics and action requirements in an effort to disambiguate value from its components (0'Doherty 2014; Hunt et al. 2015). However, in the
real world, we often need to construct valuations of never-before-seen objects. Recent studies using foraging tasks have emphasized that a more
ethological contextualization of decision-making provides a richer account of the computations which underlying choice (Cisek and Kalaska 2010;
Kahnt et al. 2011; Chau et al. 2014; Kolling et al. 2014), highlighting a need to understand the individual component processes that contribute to
value estimation. In this experiment we drew inspiration from such foraging tasks to ask how current option value is constructed from two

component parts, quality and quantity.

We designed an experiment where participants integrated information about the quality of a giftcard (how subjectively valuable it was for them to
be able to spend money at a particular store) and its quantity (how much money was on the giftcard). In a behavioural session we characterized the
combination of quality and quantity to form integrated values using an auction procedure (Becker-DeGroot-Marschak, BDM) (Becker et al. 1964),
allowing us to select giftcards with distinct qualities. In the subsequent fMRI experiment, participants evaluated a series of individual giftcards
without any choice requirement, allowing us to examine correlates of quality, quantity, and value, that were uncontaminated by decision-related

signals (Hunt etal. 2015).

We found that quality was represented in the Inferior Frontal Gyrus (IFG), extending into the lateral PFC. Conversely, quantity was associated with
increasing activity in the bilateral Intra Parietal Sulcus (IPS). To identify regions in which the two might be interacting in a manner consistent with
the calculation of value, we formulated an explicit interaction term. This interaction term captures the fact that an extra unit of money on the
highest quality giftcard is more valuable to the subject than an extra unit on the low quality giftcard; you would rather have another £ to spend at a
shop you really like than at one you dislike. This interaction (higher slope of quantity coding with higher quality) correlated with activity in the
posterior cingulate cortex and bilateral superior temporal regions. Anterior Cingulate Cortex (ACC) displayed a conjunction of all three effects,
indicative of a substrate for the calculation of integrated subjective value from its component parts. In keeping with this, we also observed
repetition suppression for integrated subjective value in the cingulate cortex, with activity covarying with the absolute difference in value between

stimuli presented in consecutive trials.
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Materials and Methods

Participants

47 participants (25 males) participated in the behavioural study, with 26 returning for an fMRI session. Of these, one participant failed to complete
the experiment due to ill-health, leaving 25 participants in total for the imaging study. Both studies were approved by a local ethics committee
(Research Ethics Committee UCL, ref. 3450/002). Based on pilot experiments, we selected 13 giftcards that were well known to the participant
population, that maximised between-subject variability, and which displayed minimal correlations between cards (i.e. preferences for a given card

could not be predicted from preferences for other cards).

During the behavioural session, participants completed two tasks: an auction procedure, from which they could obtain a mixture of up to £20 cash
and a £20 giftcard, and a session of paired choices between cards worth £20 (Figure 1). One trial was randomly selected across both sessions and
reimbursed appropriately. For the fMRI experiment, participants first completed paired choices between cards worth £20 outside of the scanner,
and subsequently chose between cards worth £1-20 within the scanner. One trial from each task was reimbursed, in addition to a £20 flat rate for

experiment completion.

Experimental Design and Statistical Analyses

Behavioural session

Participants first performed an auction task (Becker-DeGroot-Marshak, BDM) designed to elicit the subjective valuation of different giftcards
holding varying amounts of money (Becker et al. 1964). Briefly, the BDM involves players placing a minimum bid for an item on each trial. After the
experiment, a single trial is randomly selected for reimbursement. For that trial, a randomly drawn number — the “cost’- is compared to the bid. If
the cost is higher than the bid, the player retains their endowment and does not receive the item. If the bid is higher than the cost, then the player
receives the item, but, crucially, pays the cost rather than their bid. This removes an incentive to place low bids, resulting in an optimal strategy
whereby players report their true values. Each of 13 giftcards were presented in association with 12 different quantities, giving a total of 156 trials.
Following the auction task, participants chose between pairs of giftcards of matched quantity (£20). Each combination of cards was presented

twice, yielding 325 trials after the removal of trials involving two copies of the same card.

We selected a subset of participants to complete the scanning part of the study. Selection was based upon reliability, stability, and diversity of
preferences over giftcards. We fit linear regressions to values reported during the auction procedure, yielding the following equation for each

giftcard:
Integrated Value = 3*Quantity + C

Where 3 and C (an intercept term) were fit using robust regression. The [3's thus obtained are a measure of a giftcard’s quality, the value of a single
unit of currency on that giftcard. We next assessed how well these [3's predicted paired choice (Figure 3), selecting subjects for whom there was a

close relationship.

For the scanning session, we selected three giftcards, chosen to maximise variance in quality (Figure 3C). We thus selected the lowest and highest
quality card (max 3 and min 3), and one closest to the mean of the two. Having performed this selection procedure, we verified that choices of
these cards in the paired-choice session reflected the rankings calculated from the BDM (Figure 3). These [3s were used as indicators of quality for

the fMRI analyses in which parametric modulators were used (GLM2 & GLM3, see below).
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fMRI task

The task design allowed us to examine representations of quality, quantity, and their interaction, using both linear analyses and measures of
repetition suppression. To avoid measurements being confounded by variables related to the dynamics of stimulus comparison (Hunt et al. 2015),
on the majority of trials we presented a single stimulus (Figure 1D), and asked participants to evaluate its desirability. Presentation side was flipped
every 10 trials. Stimuli remained onscreen for 4000ms, before being followed by an [Tl (normally distributed around 1500ms) o, in 1/7 trials, the
appearance of a second giftcard. Participants were asked to make a choice between the two within 4000ms, using a button box. Failure to register
a choice within this time period resulted in a ‘TIME OUT" message, and participants were informed prior to scanning that if a timed-out trial was
selected for reimbursement, they would receive no payment for that part of the experiment. Each giftcard displayed in the scanner was pseudo-

coloured red or blue to reduce gross visual differences between cards.

Repetition suppression in fMRI effects can show sensitivity to expectation (Summerfield et al. 2008), necessitating counterbalancing of stimulus
order. We designed our trial presentation order such there was no relationship between the current trial and the next one. This served the dual
purposes of avoiding potential confounds in our repetition suppression analysis, and ensuring consistent engagement of our subjects, who were

unable to predict when they might have to make a decision.

We defined 7 trial types (red and blue versions of each three giftcards, + decision trials), and used a genetic algorithm to find a stimulus order in
which p(stim'y|stinv;) was matched for all stimuli i and j. We manually removed trials on which decisions were repeated, leaving a sequence of 97
stimuli. The quantity (1-20) on the giftcards were randomised, effectively orthogonalising quality and quantity (mean correlation coefficient across

participants = 0.0074, p= 0.40). Participants completed 4 runs of the task, yielding a total of 340 stimulus evaluation trials and 48 decision trials.

Logistic regression modelling of choices during fMRI task
We used logistic regression to characterize the factors modulating choices in the scanner. For each participant, we fit a model to predict whether

they chose the new card (presented during the decision trial), or the old card (on-screen from the valuation trial):
Choi(e(t) = S(B0+ B1QUa|ityNeW,0|d + Bzouantity New-0ld + B;'ntera(tion New—l)ld)

Where 3, is a constant term accounting for option-independent biases in choice, 3;.;are regression coefficients describing the effect of each term

on choice, and s is the sigmoid function:

st = 1+e™

Quality was defined using the betas from the BDM auction (see above and Figure 3A), whilst quantity merely reflected the monetary amount (£s)

depicted on each giftcard. We formulate the interaction term by first normalizing quality and quantity, and then taking the product.

To assess choice predictability, we took the output of the model (valued between 0 and 1), rounded it (such that choices were eithera 0 ora 1), and
compared it to the vector of actual choices made by the participant. Predictability was then defined simply as the % of choices correctly predicted

by the model.

fMRI data acquisition
Data were acquired using a Siemens 3T Trio scanner with a 32-channel head coil at the Wellcome Trust Centre for Neuroimaging. We used a 2D
Echo Planar Image (EPI) sequence optimised to minimise dropout in the OFC (Weiskopf et al. 2006), with voxels 3mm isotropic

(TR=3.365,TE=30ms), with 48 slices giving whole brain coverage. Slices were tilted at -30°. Scans were preceded by a field map (TE1=10ms, TE2=
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12.46ms). The first 5 volumes of each run were discarded to allow for T1 equilibration. We also acquired a T1-weighted structural scan for each
subject, comprising 176 slices over a field of view of 256mm with a Tmm isotropic resolution (TR=7.92ms, TE=2.48ms) (Deichmann et al. 2004).
Throughout scanning, we monitored breathing rate using a pneumatic belt and pulse & blood oxygenation using an infrared pulse oximeter (Nonin
systems, Model 8600 F0). Both were digitized and recorded via Spike2 (v6.17), and subsequently included in GLM analyses of brain activity along

with regressors derived from motion correction (Hutton 2011).
fMRI data preprocessing

All pre-processing and data analysis took place in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). Subsequent data visualization took place in MRIcron
(http://people.cas.sc.edu/rorden/mricron/index.html) and MRIcroGL (http://www.cabiatl.com/mricrogl/). Having discarding the first 5 volumes,
we corrected EPIs for field inhomogeneities using acquired field maps, bias corrected, slice-time corrected (to the middle slice), and realigned and
unwarped to the first EPI for each participant. EPIs were then co-registered to each participant’s structural scan. We used the DARTEL toolbox for
between-subject registration and normalization (Ashburner 2007). Structural images were first segmented into white matter, grey matter, and CSF
components. Segmented images were then iteratively warped into normalized MNI space, providing a template that was then used to normalize

EPIs, a step which included Gaussian smoothing at 8mm FWHM.

fMRI data analysis

Data were analysed using a series of General Linear Models (GLMs). These were estimated for each participant, including the calculation of
contrasts between different regressors (first-level analysis). This provided summary-statistics ([3s) which could be tested at a population level
versus a null hypothesis that they were on average equal to zero (second-level analysis) (Friston et al. 1999). To obviate multiple comparisons
when performing whole brain analyses, we applied a correction using a cluster-defining threshold of p<0.005, and a cluster-corrected FWE
threshold of p<0.05, except for in analysis of repetition suppression (GLM2, below), where a more lenient cluster-forming threshold of p<0.01 was
used, in line with recent repetition suppression studies (Barron et al. 2013; Garvert et al. 2015; Boorman et al. 2016). To extract the parameter
estimates displayed in Figure 5, we used group-functional ROIs thresholded at p<0.005. For the conjunction analysis described in Figure 5 we took
the product of 3 binary masks (quality, quantity, interaction), each thresholded at puscrreaes<0.05, resulting in a family-wise error rate of

pun(ovrecled=0-0001 25.

GLM1: quality and quantity

Our first GLM incorporated separate onset regressors for cards of different qualities (low, medium, high). Each of these was modelled as a 4s long
boxcar, and associated with a parametric modulator corresponding to the quantity on the card at each presentation. We used a fourth onset
regressor corresponding to decision-trials, which were modelled as delta functions. This GLM was used to perform a whole-brain analysis of value

computations during evaluation trials.

We performed three key contrasts:

Quality:  [Qualityyigh— Qualityo]
Ouantity: [OuantityH\ghOUality + QuantityMediumOualm« + QuantitylowQuality]

Interaction: [Quantityighouaity- Quantityyowouaiy]
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The interaction analysis was constructed to test for regions displaying steeper coding of quantity for high quality compared to low quality cards,
consistent with value integration. This corresponds to an intuition that an extra unit of a more desirable good (e.qg. a Ferrari) is worth more than an
extra unit of a less desirable good (e.g. an apple). We excluded trials preceding decisions from the evaluation regressors to guard against
contamination of the evaluation regressors by decision-related activity, a possibility arising out of the lack of ITI between evaluation and decision

trials.

GLM2: Repetition Suppression
Following the numerosity-coding literature (Piazza et al. 2004; 2007; Jacob and Nieder 2009), we designed a repetition-suppression analysis based
upon the absolute change in value between trials (see Figure 7A). We used this analysis to reveal repetition suppression effects within ROls

identified by the whole-brain analysis using GLM1.
AlntegratedValue(t) = |IntegratedValue(t) - IntegratedValue(t-1)|

Where IntegratedValue(t) is simply the product of quality and quantity on trial t (as in Equation 5.1). We used a single onset regressor to represent
all giftcard presentations, again using a 4s boxcar, with parametric modulators for Alntegrated Value, and, as a precaution, Integrated Value. The
inclusion of Integrated Value in the model allowed us to confirm that effects of Alntegrated Value were not simply the result of spurious correlation
with Integrated Value itself. Trials following decisions were excluded as they were preceded by a pair of stimuli, obfuscating calculation of stimulus
similarity. As before, we used a second onset regressor for decision trials. Contrasts were calculated merely as the value of the relevant parametric

modulators.

GLM3: Integrated Value

In order to obtain a measure of integrated value coding, we used a single 4s boxcar for all evaluation trials, associated with a parametric modulator
for integrated value (Quality x Quantity), excluding pre-decision trials as in GLM1. As in GLM1 & 2, decision trials were modelled in a separate
regressor with delta onsets. We used this analysis within ROIs identified by the whole-brain analysis in GLM1, to confirm that the ACCregion

showing a conjunction of quality, quantity, and interaction effects could also be described as coding integrated value.

Statistical tests
Parameter estimates from fMRI are normally distributed, permitting the use of parametric statistics (t-tests and Pearson correlations). When
analysing distributions we knew a priori to be non-normal (e.g. predictability, which is bounded at 0 and 100), we used non-parametric equivalents

(sign-tests and Spearman rank coefficients). All statistical testing was carried out in Matlab.

Results

Behavioural session establishes stable quality estimates

We used a behavioural session to identify participants for whom we could find giftcards with consistently different subjective qualities (Figure 1B).
The behavioural session consisted two tasks. Participants (n=47) performed a Becker-DeGroot-Marschak (BDM) auction (Becker et al. 1964) and a
series of paired choices, each involving a selection of 13 giftcards (Figure 1C). In the BDM, players reported how much they'd be willing to pay for a
giftcard loaded with a certain amount of money, from £1-20. Subsequently, participants made paired choices between different giftcards

containing matched sums (£20).

We used a linear fit to the relationship between amount of money on the giftcard and amount bid for each giftcard during the BDM to provide a
measure of the quality of each giftcard for each participant (Figure 2A). To maximize power in the fMRI study, we selected subjects whose bids were

predictable (Figure 2A) and for whom we could select 3 giftcards with distinct qualities (Figure 2C, circled points in Figure 2B). By way of
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confirmation that BDM-estimated values predicted choice, we next compared quality estimates from the BDM with the number of choices of each

giftcard in the paired choice session, preferring subjects for whom there was a high correlation (Figure 2B).

Selected subjects thus displayed consistent BDM bids, a high correlation between preferences elicited in the BDM and paired choice sessions, and a
low maximum correlation between quality, quantity, and integrated value (Figure 3). Integrated value, calculated as the product of quality and
quantity, effectively provided a prediction of the bid a participant would place for a given giftcard. The correlation between quality, quantity, and
integrated value reflects the diversity of giftcard qualities. Giftcards with disparate qualities limit the correlation between quantity and integrated

value (e.g. Figure 2C, row i and iii), whilst if all giftcards have similar qualities, the quantity/integrated value correlation will be high (Figure 2, ii).

fMRI experiment: subjects integrate quality and quantity in choice

For each participant in the fMRI experiment (n=25), we used data from the behavioural session to select 3 giftcards: the giftcard that displayed the
steepest relationship between BDM bid and quantity (high quality), the giftcard that displayed the lowest (low quality), and a giftcard of
intermediate slope (medium quality) (Figure 3A). In a pre-scanning paired choice session, we confirmed that preference estimates from the
preceding behavioural session were stable, with subjects making choices between the three selected giftcards in a highly predictable manner

(Figure 3B).

Within the scanner, participants made choices between giftcards of varying quality and quantity on 1/7 of trials (Figure 1D), resulting in a total of
48 decisions. Participants remained highly engaged throughout, exceeding the time limit for choice of 4000ms in only 7 of 1200 choices. We used a
logistic regression analysis to quantify the impact of differences between the two options upon choice. We calculated an interaction term as the
mean-centred product of quality and quantity. Intuitively, the interaction term captures the fact that an extra £ on the highest quality giftcard is
more valuable to the subject than an extra £ on the low quality giftcard. Differences between options in quality, quantity, and their interaction all
influenced participants’ choices (Quality T,,=8.6, p<0.001; Quantity T»=13.7, p<0.001; Interaction T»=3.8, p<0.001) (Figure 3C) implying that
participants combined information about quality and quantity to estimate integrated subjective value, rather than considering the two attributes

independently.

Brain activity associated with quality, quantity, and their interaction

In the scanner, participants were shown a single giftcard and asked to internally evaluate it (evaluation trials), in the knowledge that they might
have to make a fast decision between that option and another (decision trials) (Figure 1D). The preponderance of valuation trials (340/388)
provided us with an opportunity to examine value computation in isolation, without potentially confounding effects of decision dynamics (Hunt et

al. 2015).

To isolate elements of value representation, we used General Linear Models (GLMs) of voxel-wise brain activity to examine the representation of
quality, quantity, and their interaction in valuation trials. We split card presentations by quality (low, medium, high), and associated each onset
with a parametric modulator corresponding to the quantity presented on that trial. This allowed us to index main effects of card quality,
[Qualitysgn - Quality,o,], card quantity [Quantityiowquaiiy+ Quantitymedumauaiy+ Quantityignauainy), and the interaction between the two

[Quantityiighguaty~ Quantityyowquai]-

The interaction term allows us to identify regions where quantity affects activity more when giftcard value is high compared to when it is low. By
decomposing value in this way — into quality, quantity, and their interaction — we can identify brain regions displaying specific relationships with
each component, as well as regions showing an overlap of all three effects. This conjunction analysis is more stringent than a simple contrast for
integrated value, because it prevents erroneously identifying regions which simply have a strong correlation with only quality or quantity.

Motivated by this same logic, recent studies formulate fMRI contrasts for Reward Prediction Errors (RPES) as a conjunction of positive coding for
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reward and negative coding for reward expectation, thus avoiding false positives arising from the correlation between RPEs and other variables

such as reward itself (Rutledge et al., 2010).

We found three largely non-overlapping patterns of response corresponding to the representation of offer quality, quantity, and their interaction.
Higher card quality was associated with greater activity in bilateral Inferior Frontal Gyrus (IFG), centred on the pars opercularis (Left: Peak MNI= -
54,12, 30; Ty=4.79, Prve-comeaes=0.023; Right: Peak MNI= 51,9, 27; Ty=4.37, Prue-coreaes=0.032) (Figure 4A). On the left, this extended into
dorsolateral PFC (Peak MNI=-36, 48, 24; T»4=3.16, Prwe-coreaed=0.044) and included Broca’s area, an area associated with semantic comprehension
(Price 2012), arguably a process necessary for evaluating abstract stimuli such as giftcards. Parameter estimates extracted from group-level
functional ROIs within IFG (defined at p<0.005) suggested an absence of sensitivity to either quantity (T=1.18,p=0.24), or the interaction of
quantity and quality (T,»=1.53, p=0.14) in this region, although direct comparisons did not distinguish quality coding from that of quantity or the
interaction (T,4=1.88,p=0.073; T,=1.88,p=0.17).

Offer quantity correlated with activity in bilateral Intraparietal Sulcus (IPS) (Left: Peak MNI: -27,-66,51; Ty=4.77, P rwe-comeaea<0.001; Right: Peak
MNI: 33,-66,51; T,4=4.68, Pre-coneces<<0.001) resonating with a role for this region in numerical reasoning in humans and non-human primates
(Nieder and Miller 2004; Piazza et al. 2004; Pinel et al. 2004; Piazza et al. 2007; Harvey et al. 2013)(Figure 4B). As for IFG, activity in the IPS was
selective for number, with no sensitivity to quality (T=0.19, p=0.85) or the interaction of quality and quantity (T,,=0.84, p=0.41). This indicates
IPS is not performing value coding per se, but specifically represents quantity of available options. Direct comparisons confirmed that quantity
correlations were greater than those for quality (T=3.52, p=0.0017) and for the interaction (T=3.36,p=0.0025). We also observed quantity-
related activity in bilateral visual cortex (Left: Peak MNI: -33,-87,-12; T=5.54, P rwe-coreaes<0.001; Right: Peak MNI: 27,-87,-12; T54=5.49, prwe-
conected<0.001)

Finally, we asked whether activity in any region of the brain was associated with an interaction between quality and quantity, correlating more
steeply with quantity for high compared to low quality giftcards. This is a signature of value computation, involving additional processing above
and beyond a simple reflection of option quality or quantity. The most prominent effect was located along the posterior cingulate cortex (Peak MNI:
-12,-15,54; T=3.57, P rwe-comectea<0.001) where activity was specific to the interaction term, with no evidence of quality (T,=-0.14,p=0.89), or
quantity (T,,=0.77, p=0.45) correlations, implying that despite this region’s involvement in value computation it does not represent an integrated
value signal per se. Direct comparisons confirmed that the interaction effect exceeded both quality (T»=2.93,p=0.0072) and quantity
(T,4=2.53,p=0.018) contrasts. Interaction contrast effects were also present in bilateral superior temporal lobes (Left: Peak MNI=-63,-45,0;

T2=5.55, P we-comectea<0.001; Right: Peak MNI=48,-33,3; T,5=4.85, P rwe-conrecea<0.001)(Figure 4C).

Computation of integrated value from component parts in the cingulate
Having characterized neural responses to individual components of option value (quality, quantity, and their interaction), we next asked whether
any regions represented integrated value. To do so, we formulated a parametric regressor for subjective integrated value, by combining quality and

quantity mutliplicaively in the manner suggested by our behavioural results (Figure 3).

However, since integrated value is correlated with quality and quantity (though this correlation is limited by design) testing for effects of
integrated value presents a problem as regions sensitive to quality or quantity alone might appear to reflect integrated value. To overcome this, we
supplemented our parametric analysis with a conjunction analysis, reasoning that a region truly representing integrated value ought to display
sensitivity to all of its component: quality, quantity, and their interaction. Importantly, the interaction of two mean-centred variables is

decorrelated from either component, giving us a way to check for correlates of computation of subjective value.
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Both analyses revealed a striking convergence on the anterior cingulate cortex (ACC) (Figure 5) where activity covaried with a parametric modulator
forintegrated value (Peak MNI: -12,21,39; T54=6.04, pru-coreces<<0.001) and showed a conjunction of effects of quality, quantity, and their
interaction (all p<0.05ucoreced)- This chimes with known roles of this regions, including the fact that it contains neurons that multiplex attributes in
value-based decision-making (Kennerley et al. 2011) and its necessity for value-learning (Rushworth and Behrens 2008; Hayden et al. 2009).
Decomposing the interaction effect within the ACC, we observed that although quantity coding for all three qualities was positive, it was only
significantly so in the high quality condition (Quantity,ouquary: T¢=0.15, p=0.87; Quantitywisquary: T2=1.51, p=0.14; Quantityignquairy: Te=4.24,
p<0.001). By way of comparison, all three of these effects were significant in the IPS region pictured in Figure 4B, with no significant difference
between coding of quantity for high and low quality giftcards (Quantityiowquary: T2=2.30, p=0.03; Quantityuidquairy: Te=2.69, p=0.012;
Quantityyignauaity: T=4.78, p<0.001; Quantityignouaity V5. Quantityiowauaity: T=1.17, p=0.25).

We next reasoned that if the ACC's value estimates guide choice then we should see greater activity in decision trials compared to valuation trials.
This was indeed the case with decision trials associated with enhanced activity in the same region (Peak MNI=9,15,45; T5,=17.03, pry-
comeaed<0.001) (Figure 5B). Dorsally, this region overlaps with activity in dmPFC showing an integrated value difference signal (Lebreton et al. 2009;

Grueschow et al. 2015) and previously characterized as the final value-comparison step prior to motor output (Hare et al. 2011).

Our analyses revealed dissociable representations of quality, in the IFG, and quantity, in the IPS. Although we lack the temporal precision to test
whether these segregated representations precede the emergence of integrated value signals in ACC, we nevertheless can ask whether between-
subject variability in component coding is related to between-subject variability in ACC representations. We found evidence that this was the case,
with stronger IFG encoding of quality was associated with stronger coding of quality in ACC (r=0.63, p<0.001) (Figure 5C), whilst stronger IPS
encoding of quantity was associated with stronger quantity coding in the ACC (r=0.68, p<0.001) (Figure 5F). Importantly, the converse
correlations did not hold, with parameter estimates for IGF quality unrelated to ACC quantity (r=0.04, p=0.83) and IPS quantity unrelated to ACC
quality (r=0.14, p=0.50) coding (Figure 5D, 5E). This specificity suggests that observed correlations reflect meaningful inter-regional relationships

rather than correlated variance in signal-to-noise between participants.

Strength of neural quantity coding reflects choice predictability

The degree to which subjects’ choices were correctly predicted by our logistic regression varied, from 69% to 92%. We reasoned that stronger
neural representations of value components should lead to more predictable choices. Using parameter estimates (3's) extracted from our GLM
analyses, we asked whether between-subject variability in 3's related to between-subject choice predictability. We found that the strength of
neural correlations with quantity, but not quality, were associated with predictability of choice (Figure 6). Mean [3's in both the IPS (p=0.60,
p=0.002) and ACC (p=0.42, p=0.039) were positively correlated with choice predictability, suggesting that stronger neural representations of
quantity correspond to more reliable choices. Correlations between predictability and quality coding in the IFG (p=0.41, p=0.104) and ACC
(p=0.30, p=0.142) were also positive but did not reach significance, perhaps reflecting the greater range of values for quantity than quality or the
potential impact of overtraining on giftcard quality. We observed no relationship between interaction-coding in ACC and predictability (p=-0.04,
p=.83). We note that applying a conservative Bonferroni correction for the 5 comparisons we make here, only the effect in the IPS survives an

adjusted threshold of a=0.01.

Using summed log-likelihood of choices according to the logistic regression model as an alternative measure of choice predictability yielded a
consistent pattern of results, although the effect in the ACC was no longer significant at a=0.05 (IPS: p=0.55, p=0.004; ACC: p=0.35, p=0.089).
We did not observe any other correlations between the parameters of our logistic regression model for behaviour and those of our GLMs for neural

activity.
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Repetition suppression for integrated value in the ACC

Repetition Suppression (RS) describes the phenomenon whereby repeated presentation of stimuli that are similar along some dimension evoke
reduced activity in brain regions sensitive to that attribute (Grill-Spector et al. 2006). This is putatively due to a reduction in activity in neurons
activated in both trials (Figure 7). This provides a means to assay the neural overlap in the representation of two stimuli such as foods (Barron et al.
2013), faces (Loffler et al. 2005) or even agents (Garvert et al. 2015). This can reveal non-monotonic codes invisible to traditional GLM approaches,
such as tuned numerosity representations in the parietal cortex (Piazza et al. 2004; 2007; Jacob and Nieder 2009). Since our task involved the

calculation of value from information about quantity, we hypothesized that value representations in the ACC might show a similar form.

We asked whether RS provides additional evidence of value encoding in ACC. We constructed a GLM where we modelled the absolute difference in
integrated value (AlntegratedValue) between subsequent trials, as well as the Integrated Value on each trial. If neurons in a brain region are
undergoing RS, aggregate activity as assayed by BOLD should covary with the absolute difference between trials (Barron et al. 2016). We found
evidence for repetition suppression to value in dorsal ACC (Peak MNI: -3,3,51; T54=3.86, Prw-corecte=0.003), just posterior to the activity related to
monotonic encoding of integrated value (Figure 7B). These activations were partially overlapping, such that the integrated-value coding
conjunction identified in Figure 5 showed effects of both AlntegratedValue and Integrated Value (Figure 7C) (AlntegratedValue: T,=2.48,
p=0.020; Integrated Value: T=3.26, p=0.0034). Repetition suppression for integrated value was surprisingly widespread. We also observed
repetition suppression for value bilaterally in the lingual gyrus (Left: Peak MNI: -15,-45,-9; T54=6.18, Pru-corected<0.001; Right: Peak MNI: 15,-48,3;
T2u=4.56, Prue-oreaea<0.001), the right superior temporal sulcus (Peak MNI: 63,-30,3; T5s=5.80, Prwe-corecer<<0.001), and bilaterally in the posterior
insula (Left: Peak MNI: -30,0,-3; T4=5.00, Prwe-corecea<<0.001; Right: Peak MNI: 33,-6,-12; T4=3.60, rug-coreaea<0.001)

Discussion

Value representations are often studied as monolithic entities. Indeed, considerable effort has been expended in identifying abstract behavioural
and neural signatures of scalar value estimates. However, recent work suggests that during choice, components of value compete at an attribute-
level to quide decisions (Hunt et al. 2014), emphasising the importance of decomposing value into its constituent parts. Here we show that in the
absence of choice, integrated value correlates appear in the ACC, with component representations in the IFG (quality), and IPS (quantity) (Figures 5
&6). A distinct network appears to integrate the two, with posterior cingulate and superior temporal lobe activations corresponding to the
interaction between quality and quantity (Figure 4). A more posterior region of the ACC displays repetition suppression to integrated value (Figure
7).

Correlates of quality and quantity in the brain

Bilateral IFG activity scaled with the quality of the giftcard presented on each trial (Figure 4A). This was unexpected, given the scarcity of reports of
IFG involvement in value-based decision making (though see (Rogers et al. 1999; Zysset et al. 2006; Liljeholm et al. 2011)). A priori, the
orbitofrontal cortex (OFC) might represent a more promising candidate for the representation of stimulus quality. However, representations in the
OFCappear to be particularly entangled with stimulus identity (Padoa-Schioppa and Assad 2008; Barron et al. 2013; Klein-Fliigge et al. 2013;
McNamee et al. 2013; Howard et al. 2015, Noonan et al. 2011), potentially reflecting the central role of the OFCin providing an internal model of
the world (Wilson et al. 2014). For instance, Padoa-Schioppa and Assad (2008) describe OFC cells that respond specifically to one juice or another,
which they describe as reflecting the taste of a given juice. This encoding of juice identity is distinct from the reward quality, and no study has
reported OFC unit responses that reflect quality alone (i.e., the preference ordering of different stimuli), while being insensitive to quantity. It
seems, therefore, that the OFCis particularly interested in tracking relationships between specific rewards and their predictors (Takahashi et al.
2013; Stalnaker et al. 2014; Lopatina et al. 2015; Lucantonio et al. 2015; Stalnaker et al. 2015; Boorman et al. 2016, Noonan et al., 2011), rather

than estimating stimulus quality per se. Furthermore, a recent study found that OFC exclusively represented hidden variables related to the current
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state (Schuck et al. 2016). The lack of OFCinvolvement in our task is likely to reflect the static and transparent relationship between stimuli and

outcomes in our experiment.

The involvement of the IFG in the representation of stimulus quality is consistent with the semantic nature of the giftcard stimuli we used. IFG is
commonly activated in lexical tasks (Price 2012), with left-hemisphere lesions to this area producing impairments in language production and
comprehension. In one of the few studies attempting to parse value into distinct components, Lim et al (Lim et al. 2013) offered participants t-
shirts that varied in their aesthetic and semantic properties. They found correlations with aesthetic value in the fusiform gyrus and semantic value
in the superior temporal gyrus, whilst vmPFC activity correlated with the value of both attributes. This suggests that the extraction of quality may
occur in concert across brain areas specialized for the analysis of distinct stimulus features, in the same way that feedforward models of visual
inputs eventually produce value estimates in deep reinforcement learning networks (Mnih et al. 2015; Silver et al. 2016). This suggests that a

representation of stimulus quality in IFG may be specific to semantically rich stimuli, such as those employed here.

Conversely, our observation of quantity coding in the IPS (Figure 4B) is predicted from the literature (Nieder 2016). A wide variety of animals show
an ability to make ethologically relevant decisions using number, from lions (McComb et al. 1994), to crows (Rahman et al. 2014) . Even new-horn
chicks are capable of tracking the number of an imprinted object that is placed behind a screen (Rugani et al. 2009). In macaques, such judgments
rely upon a network of frontal and parietal regions containing neurons tuned to different numbers, including the number zero (Nieder et al. 2002;

Nieder and Miller 2004; Ramirez-Cardenas et al. 2016).

Studies in humans have made use of model-based decoding analyses (Harvey et al. 2013) and repetition suppression designs (Piazza et al. 2004;
2007; Jacob and Nieder 2009) to provide evidence that similar tuning curves for number exist in the human intraparietal sulcus (IPS). Our results
imply that the same IPS circuitry subserves number representation in value computation. This is consistent with the recent observation that when
number and value are decorrelated, the IPS tracks quantity and not value (Kanayet et al. 2014). This serves to clarify the role of parietal cortices in
value-based decision making, suggesting that when financial stimuli are used (Ballard and Knutson 2009; Clithero et al. 2009; Chau et al. 2014),
evaluation occurs within a financial framework (such as the BDM) (Plassmann et al. 2007; Medic et al. 2014), or if stimuli merely differ in
magnitude (Louie et al. 2011), parietal responses to quantity may be misconstrued as representing value or its comparison. Conversely, we find
that the IPS specifically represents the quantity of an available option, and that the strength of numerical representations in IPS correlates both
with choice predictability and ACC quantity coding. This is consistent with neurons in IPS contributing to the representation of stimulus value in the
ACG, and this latter representation subsequently being used to guide choice. However, it is unclear why choice predictability is so much strongly
linked to quantity coding than it is to quality coding (in IFG and ACC) and to interaction coding (in the ACC). We suspect that the greater range of
quantities than qualities in our experiment may have increased our power to observe relationships with quantity coding, but this remains an open

question.
The role of the ACC in evaluation

We found that activity in the ACC was consistent with representation of integrated value. ACC showed a positive correlation with integrated value.
Even after accounting for the effects of quality and quality, ACC tracked the interaction term characteristic of integrated value in this task (Figures
5Cand 6A). Beckmann et al (Beckmann et al. 2009) parcellated the cingulate cortex according to connectivity. The region we identify corresponds
to their region 4, which shows strong connectivity to dorsolateral prefrontal cortex, and is commonly implicated in value-based tasks. The region
showing repetition suppression effects may be more situated in their region 5, which has a higher connectivity to the parietal cortex. This raises the

possibility that the repetition suppression we observe is inherited from tuned numerical representations in parietal cortex (Nieder and Miller 2004).
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The ACCis frequently identified in both human (Bush et al. 2002; Kolling et al. 2012; Boorman et al. 2013) and animal experiments (Seo and Lee
2007; Hayden et al. 2009; Hayden and Platt 2010; Kennerley et al. 2011; Cai and Padoa-Schioppa 2012) of value-based choice. The more dorsal
region in which we find signatures of integrated value is associated with tasks wherein participants assign value to actions (Beckmann et al. 2009).
This is the case in our experiment, since giftcards were displayed either on the left or the right hand side of the screen, such that assessing the value
of a particular giftcard was the same as assessing the value of a left/right button press. Dorsal ACC appears to be particularly engaged by foraging
type tasks, in which the pertinent comparisons are between options presented sequentially (Seo and Lee 2007; Kolling et al. 2012; Boorman et al.
2013). We further note that since the positive value correlations we observe in the ACCare recorded in the absence of choice, they cannot be

explained as a function of choice difficulty and are more consistent with a proposed role in sequential foraging decisions (Kolling et al., 2016).

We did not observe value-related activity in the ventromedial PFC (vmPFC), the part of the cortex most frequently associated with valuation
(Rushworth and Behrens, 2008), nor in the ventral striatum. This chimes with recent observations suggesting that sequential (Hunt et al., 2013) or
time-limited (Jocham et al., 2014) choices do not engage vmPFC. Indeed, a growing body of evidence suggests that the ACCis particularly when
subjects engage in sequential, foraging-type decisions, characterized by an evaluation of whether to engage or not (Kolling et al., 2012, Kolling et
al., 2016). Conversely, whether evaluation alone effectively engages vmPFCis unclear. Although early reports suggested that the vmPFC was part
of an automatic valuation system (Lebreton et al., 2009), recent work suggests otherwise (Grueschow et al., 2015). The few studies that report
value-related activity in macaque vmPFC do so in the context of free viewing (Abitbol et al, 2015; Strait et al., 2014), raising the possibility that the
vmPFCis particularly engaged when values are compared via repeated eye movements (Krajbich et al., 2010). The observation that vmPFCis crucial
for episodic memory and imagination (Benoit et al., 2014, Hassabis and Maguire, 2009), and a predominance of saccade-frequency theta
oscillations in mPFC (Adhikari et al., 2010, Paz et al., 2008), hints at a more general role for the vmPFC in mediating a short-term plasticity allowing
features—of a scene, an episode, or a choice— to be integrated over several seconds. This might explain why our task, which required participants

to evaluate a single stimulus at a single location, did not modulate vmPFC activity.

Our finding that the cingulate cortex integrates information about quality and quantity to form a multiplicative value representation of the current
stimulus is also interesting in light of a literature implicating the cingulate in the representation of values associated with ‘model-based’ cognition
(Wunderlich et al. 2012; Doll et al. 2015). This describes flexible computation of value associated with a certain stimulus, and is typically contrasted
with ‘model-free’ cognition, in which stimulus or action values are cached and updated only through repeated experience (Dolan and Dayan 2013).
The multiplication of quantity and quality we observe in the ACCis consistent with the idea that the cingulate provides a model which produces
estimates of quantities relevant to behavior (O'Reilly et al. 2013; Economides et al. 2014; Kolling et al. 2014). In our case, utility was maximized by
combining quality and quantity in a multiplicative manner, and this is what the ACC appears to do, in a manner that reflects the coding of quality

and quantity in the frontal and parietal lobes respectively (Figure 5 C;F).

Our design also enabled us to perform a repetition suppression analysis, allowing us to reveal coding schemes hidden to conventional BOLD
analyses. We found that parts of the cingulate cortex displayed repetition suppression to integrated value, with activity that scaled with the
absolute difference in value between trials (Figure 7A). This region was posterior to the peak activity associated with monotonic integrated value,
extending into the area identified in the conjunction analysis of quality, quantity, and their interaction (Figure 7B). Although the precedent from
the numerosity-coding literature is to suppose that RS results of this kind provide positive evidence of non-monotonic tuning (Piazza et al. 2004;
Ansari and Dhital 2006; Piazza et al. 2007; Jacob and Nieder 2009), we are cognisant such repetition suppression effects are not an unambiguous
signature of non-monotonic codes. In modelling work to be reported elsewhere, we observe that repetition suppression effects such as the ones we
observe here can result from mixed linear codes combined with divisive adaptation. Furthermore, given the role of the ACCin comparing option

values over time (Kolling et al., 2012; Kolling et al., 2014), the observed relationship with variance in value from trial-to-trial could reflect a
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cognitively-meaningful surprise signal, potentially related to environmental volatility (Behrens et al., 2007). Recent work observes just such a

signal in a biophysically plausible model of reward learning, in which learning is adapted to volatility via metaplasticity (Farahashi et al., 2017).

To conclude, we find that a distributed network comprising the intraparietal sulcus, inferior frontal gyrus, and posterior cingulate and superior
temporal sulcus contribute to the computation of integrated value in the ACC. The strength of signals in the ACC reflected the degree to which they
were represented in brain areas coding for quality (IFG) and quantity (IPS), and stronger brain correlations with quantity were associated with more
predictable choices. We further demonstrate that parts of the ACCalso show repetition suppression to integrated value, consistent with the idea
that tuning for value is non-monotonic in parts of the cortex. Our findings demonstrate how value is assembled from its component parts, and

emphasise the potential for repetition suppression as an assay of population encoding scheme.
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Captions

Figure 1| Experimental procedure (A) We used giftcards to manipulate quality and quantity. Cards from different shops had different qualities,
depending upon the subjective value of money that can be spent at that shop alone. Quantity varied as the amount of money (number of £)
depicted on the card. (B) Following an initial behavioural session in which we mapped value functions for different giftcards, a subset of
participants were invited to return for an fMRI session. (C) Behavioural experiment. The first task involved an auction procedure (Becker-DeGroot-
Marschak procedure, BDM). Participants were offered different cards with varying amounts of money on them, and indicated the maximum
amount they would be willing to pay for that card. In the second (paired choice) task, subjects made choices between pairs of giftcards with equal
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quantities (£20). (D) fMRI experiment. On most trials (6 of 7) participants saw only a single giftcard from one of three different shops, with a
randomly varying quantity (amount of money). On decision trials (1 0f 7), a second giftcard was displayed 2s after the first, and participants had 4s
to make a choice between the two giftcards. ITI’s were normally distributed around 1.5s.

Figure 2 | Example participants from behavioural experiment We used data from the behavioural session to determine subsequent
inclusion in an fMRI study based on criteria of consistency and diversity of preferences for different giftcards (assessed using the predictability of
BDM ratings), relationships between BDM and paired choice tasks, and correlations between quantity and subjective value. (A) Firstly, we
examined quantity-bid relationships for the 13 different giftcards. The slope of the quantity-bid relationship for each giftcard is a measure of that
giftcard’s quality, with higher slopes corresponding to more valuable brands. Here, participant i has diverse but noisy preferences, ii is consistent
but has similar preferences across giftcards, whilst iii display an acceptable level of consistency whilst maintaining diverse preferences. (B) To
assess preference stability, we compared the slope of lines estimated from the BDM task with the number of times each giftcard was chosen in the
paired-choice task. Participant i shows a weak relationship between choices in each session; ii is consistent but shows little variability; and iii is both
consistent and displays diverse preferences. (C) For the fMRI experiment, we selected three giftcards for each participant that differed maximally in
quality. Here we show BDM plots for selected cards. As before, iis noisy but shows diverse quality preferences, ii has similar preferences over
giftcards, and iii has consistent and diverse preferences over giftcards.

Figure 3 | Behavioural results for subjects in scanning experiment (A) Average quantity-bid functions show the difference in quality for
three selected giftcards for subjects who completed both the behavioural and fMRI sessions (n=25). (B) In a pre-scanning paired-choice session,
we confirmed that the ordering of cards by quality was highly consistent between sessions. (C) Analysis of choices made in the MRI scanner. During
the fMRI experiment, participants made 48 choices between cards of varying quality and quantity (see Figure 1D). We used the differences between
options to predict choices using logistic regression. The differences between options in both quality (T,,=8.6, p<0.001) and quantity
(T,=13.7,p<0.001) were predictive of choice. Importantly, the interaction between quality and quantity also predicted choice (T,=3.8,p<0.001),
consistent with the multiplicative relationship expected from the observed quantity-utility functions (Figure 3A).

Figure 4 | Representation of quality, quantity, and their interaction (A) We observed bilateral coding of offer quality [Qualitygn —
Quality,o,] bilaterally in the Inferior Frontal Gyrus (IFG). (B) Increasing quantity, as tested by [Quantityiighauaity +
Quantityyegumouaiiy+Quantityiouauaryl, Was associated with greater activity bilaterally in the Intra Parietal Sulcus (IPS). () Activations in the posterior
cingulate cortex were consistent with representing the interaction of quality and quantity but not either variable separately [Quantityygnuaiy —
Quantityyowauaiy]- Errors bars are SEM across subjects, SPMs thresholded at p<0.01 for visualization.

Figure 5 | Computation of value from component parts in the anterior cingulate cortex (A) Overlapping effects of quality, quantity, and
their interaction in the ACC. A conjunction analysis revealed overlapping representations of each component (p<0.05ncoreces) [green] in the ACC,
suggesting a nexus for the computation of value. A complementary analysis using an explicit representation of integrated value as a parametric
modulator identified the same region (p<0.05¢we-creces) [turquoise]. Timecourse displayed for illustration purposes. (B) Decision > Non-Decision
trials. The ACCalso showed higher activity in trials upon which a decision was made compared to valuation trials [red], overlapping with the
conjunction analysis identified in panel a [green]. (C) Participants with stronger representations of quality in the IFG showed stronger
representations of quality in the ACC (r=0.63, p<0.001). (D) Quality sensitivity in IFG was unrelated to quantity coding in ACC (r=0.04, p=0.83).
(E) Quantity sensitivity in IPS was unrelated to quality coding in ACC (r=-0.14, p=0.50). (F) Participants with stronger representations of quantity
in the IPS showed stronger representations of quantity in the ACC (r=0.68, p<0.001). Each point is one participant.

Figure 6 | Neural quantity sensitivity relate to choice predictability We found that coefficients for quantity in (A) IPS (p=0.60, p=0.002)
and (B) the ACC (p=0.42, p=0.039) correlated with the predictability of participants’ choices, as assessed by the ability of our logistic regression
model to predict choice. Correlations with quality coding in the IFG (p=0.41, p=0.104) and ACC (p=0.30, p=0.142) were positive but not
significant.

Figure 7 | Repetition suppression for value in the anterior cingulate cortex (A) Repetition suppression analysis logic. We hypothesize a
population of neurons tuned to value where the different neurons have overlapping tuning curves spanning the range of values presented. Black
arrows denote stimulus value for that trial. If consecutive trials activate non-overlapping populations of neurons, evoked responses for each
stimulus are similarly high on each trial (top panel in orange). However, repeated presentation of the same stimulus produces repeated activation
of the same neurons on consecutive trials, leading to a reduction in the neural response (bottom panel in blue). Summation over all neurons in the
population (as in the BOLD signal measured in fMRI), leads to higher activity when consecutive stimuli activate unique subsets of neurons (top
panel) than when consecutively activated populations overlap (bottom panel). Predicted BOLD activity is thus proportional to the absolute
difference in value between consecutive trials. (B) Evidence for multiple forms of value coding in the cingulate. We examined cingulate
representations of repetition suppression to integrated value (change in value from trial n-1to trial n, AlntegratedValue) [green], and monotonic
encoding of integrated value (a standard parametric modulator approach) [red]. Voxels sensitive to repetition suppression were more posterior,
with monotonic encoding stronger in anterior voxels. (C) The ACC region identified in the conjunction analysis (Figure 5A) also shows repetition
suppression to integrated value. We extracted mean parameter estimates for AlntegratedValue and for integrated value from the voxels identified
in the conjunction analysis. Both were positive on average (AlntegratedValue: Ty=2.48,p=0.020; Integrated Value: T=3.26, p=0.0034). Error bars
are SEM across participants.
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