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We assess whether a cardinal model can be used to relate neural observables to stochastic
choice behavior. We develop a general empirical framework for relating any neural
observable to choice prediction and propose a means of benchmarking their predictive
power. In a previous study, measurements of neural activity were made while subjects
considered consumer goods. Here, we find that neural activity predicts choice behavior with
the degree of stochasticity in choice related to the cardinality of the measurement. However,
we also find that current methods have a significant degree of measurement error which
severely limits their inferential and predictive performance.
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Traditional economic methods for establish-
ing a utility representation, such as revealed
preference, are now routinely used to identify
the anatomical and functional characteristics of
“value” signals in the human brain (Fehr &
Rangel, 2011; Glimcher & Fehr, 2013). This
suggests a general strategy for eliciting prefer-
ences in situations when revealed preference
methods are problematic or choice data are un-
available: measurements of neural activity can be

used to assess valuations of choice alternatives to
directly predict a subject’s choice behavior (Knut-
son, Rick, Wimmer, Prelec, & Loewenstein,
2007; Krajbich, Camerer, Ledyard, & Rangel,
2009; Lebreton, Jorge, Michel, Thirion, & Pes-
siglione, 2009; Levy, Lazzaro, Rutledge, & Glim-
cher, 2011; Smith, Bernheim, Camerer, & Rangel,
2014; Telpaz, Webb, & Levy, 2015; Tusche,
Bode, & Haynes, 2010). Indeed, such prediction
methods have not only been applied within in-
dividuals but also across individuals and across
populations (Falk, Berkman, & Lieberman,
2012; Genevsky & Knutson, 2015; Genevsky,
Yoon, & Knutson, 2017; Smith et al., 2014;
Telpaz et al., 2015).

The early prediction literature has proceeded
along two avenues. The first established the
ordinal properties of the neural measurement
within a deterministic choice model (Levy et al.,
2011; Tusche et al., 2010). In effect, it was
assumed that the choice alternative associated
with the higher measurement of neural activity
is always chosen. The second relaxed this as-
sumption of ordinality in an effort to better fit
the choice data. It is well accepted that choice
behavior exhibits stochastic properties (Luce,
1959), and cardinal methods allow the proba-
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bility of choosing an item to depend on the
difference in measured neural activity between
two choice alternatives (Knutson et al., 2007;
Smith et al., 2014, see “Related Literature” for
a full review).

However, in the context of choice prediction,
little attention has been paid to the sources of
stochasticity—in neural activity and its
measurement—which lead to a cardinal
choice model. Of course, it is widely held in
neuroscience that neural activity is inherently
stochastic, and the cardinal properties of neural
measurements have been routinely described
for over half a century (Glimcher, 2005; Rieke,
Warlan, van Steveninck, & Bialek, 1997). How-
ever, the sources of this stochasticity, and at
what stage of the choice process it might arise,
can have critical implications for how research-
ers relate stochastic neural data to stochastic
choice behavior. In particular, our understand-
ing of how the statistical properties of neural
measurements interact with the experimental
paradigm is limited, thus impacting both choice
prediction and inference.

In economics, the class of random utility
models is routinely applied to capture stochastic
choice behavior within a utility maximization
framework (Becker, DeGroot, & Marschak,
1963; McFadden, 1973, 1981, 2001). Many of
these models have the inherently cardinal fea-
ture that the probability of choosing an alterna-
tive is related to the differences in utilities.
Motivated by classic experiments which dem-
onstrate that choice probabilities vary with util-
ity (Hey & Orme, 1994; Mosteller & Nogee,
1951), random utility models (RUMs) have
been widely applied to experimental data. How-
ever, some studies have also questioned the
relevance of a cardinal model for individual
stochastic choice behavior, at least in some
cases, instead proposing that utilities might be
random but not cardinal (e.g., “random prefer-
ence” models, Loomes, 2005). For instance,
Agranov and Ortoleva (2017) presented sub-
jects with repeated choice sets over lotteries,
and consistent with previous literature, they
found that a large majority of subjects exhibit
stochastic choice. However, they also found no
statistically significant relationship between the
difference in the (estimated) expected utility of
any two lotteries and the likelihood that a sub-
ject switched their choice on repeated trials.

How best to model stochastic choice behavior is
still a question of much debate (Hey, 2005).

In this article, we aim to assess whether a
cardinal framework can, and should, be used to
relate neural observables to stochastic choice
behavior. Below, we outline a broadly applica-
ble econometric framework for relating neural
observables to stochastic choice behavior,
which we call the neural random utility model
(NRUM). The NRUM extends familiar aspects
of the random utility framework to neural ob-
servables, including both the maximization of
stochastic decision variables and the possibility
that differences in these variables contain infor-
mation for choice prediction.

In addition, the NRUM allows the develop-
ment of hypotheses about the various sources of
error present in the measurement of neural ac-
tivity, an issue that has not been addressed by
previous literature. We demonstrate how these
errors interact with stochastic decision variables
in a choice prediction exercise, and we examine
how features of the experimental design allow
separate estimation of measurement error from
the stochastic decision variable. This allows us
to quantify the relative magnitudes of these
errors in a way that is not possible with an
ordinal approach, providing an estimate of the
variance of measurement error in choice predic-
tion experiments.

Because the model is general purpose, it can
be used with regard to any neural observable to
assess whether different experiments—or fu-
ture measurement techniques—provide true ad-
vances in choice prediction. To demonstrate this
feature, we apply it to a well-known data set
previously used to establish the ordinal proper-
ties of a neural measurement (Levy et al., 2011).
In the first stage of the experiment, subjects
were shown each of 20 consumer items while
they were inside a functional magnetic reso-
nance imaging (fMRI) scanner. For each item,
targeted measurements of neural activity in the
medial prefrontal cortex (mPFC) and the stria-
tum were recorded. In the second stage, subjects
were asked to make choices between all pairs of
the items, with all choice sets repeated twice.
This data set thus has a crucial feature that can
be used to test a cardinal choice model. As the
measurements were made independently of the
choice (over the course of an hour), the scale on
which the measurements were made must be (at
least partially) maintained over measurements
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for the data set to have any predictive power.
This would provide evidence for one property
of a cardinal measurement, namely that each
measurement is from a common scale.

The Levy et al. (2011) data also hint at a
second property of a cardinal measurement,
namely that differences between measurements
contain predictive information. Although the
choice behavior of subjects was relatively con-
sistent, maintaining transitivity in 96% of eligi-
ble triplets, subjects did switch their choices in
9.3% of the repeated choice sets they faced.
This is a degree of choice stochasticity typically
found in such experiments (Telpaz et al., 2015).
Even though the analysis in Levy et al. (2011)
consisted of an ordinal ranking of the blood-
oxygenation-level-dependent (BOLD) activity
for each item (see Figure 1)—the item with the
higher ranking was always predicted to be cho-
sen—the choice prediction rate was highest for
the pairs of items with the largest ordinal “dis-
tance” in ranking (83% vs. an overall prediction
rate of 56%, across all choice sets and all sub-
jects). This suggests that the distance between
neural measurements matters. However, the
analysis in this widely cited study highlights
two issues typical of the neuroscientific litera-
ture on choice:

• The sources of stochasticity in neural predic-
tion variables are not modeled at all. Note
that the prediction exercise appears to per-
form worse than chance for items with adja-
cent rankings—which is obviously impossi-
ble. This arises because neural measures are
constructed via multiple levels of analyses.
The interaction between these random vari-
ables, the errors in their measurement, and
the choice prediction exercise can, and has,
led to errors in inference.1

• An ordinal analysis does not account for
some information, namely, the difference in
neural activity, that may improve predictive
performance for repeated choice sets. For in-
stance, whereas an ordinal model does not
predict that a subject will switch their prefer-
ence, a cardinal analysis can vary the proba-
bility of choice according to the difference in
neural activity.

These issues can be addressed by applying the
NRUM to this data set. We find that the differ-
ence in the neural observable is significantly cor-
related with choice behavior—and has choice pre-

diction power beyond chance; however, we also
find evidence for a startling degree of measure-
ment error in the neural data. This measurement
error biases model estimates toward zero, ad-
versely affecting both prediction rates and infer-
ence about which brain areas have predictive pow-
er. It also leads to seemingly puzzling features of
the choice data. The NRUM allows a partial cor-
rection for measurement error, and we examine
features of the experimental design which yield
identification of the source of error. Once the
measurement error is accounted for, the data are
consistent with the NRUM.

Finally, a means of benchmarking the predic-
tive power of the measurements, with regard to
stochastic choice, is also proposed. Existing pre-
diction methods treat each choice trial indepen-
dently, even if there are repeated trials from the
same set. We propose two methods for assessing
the predictive performance of such repeated-
choice paradigms and demonstrate that the ordinal
prediction methods used to date cannot capture
these basic features of the data. We also find that
the neural measurements found in the analysis by
Levy et al. (2011) yield in-sample choice predic-
tion results barely on par with standard observ-
ables (price and quality ratings), even after ac-
counting for their cardinal features. Combining
the neural measurements with these standard eco-
nomic observables improves predictive perfor-
mance. Although this suggests that these two
types of observables contain orthogonal predictive
information, it remains to be seen if improvements
in measurement technology can achieve improved
prediction rates.

Related Literature

Choice Prediction With Neural Observables

Much of the initial excitement in the field of
neuroeconomics involved extracting value sig-
nals from the vast amount of data produced by
fMRI studies. Typically, these studies measured

1 Each neural measurement is constructed from numerous
independent scans, each comprising a large amount of data
with a spatial and temporal structure, and each measurement

is related to repeated choices from one of �20
2 � binary choice

sets. The sources of stochasticity present in neural measure-
ment, the experimental paradigm, and how they interact in
choice prediction are clearly important aspects of any econo-
metric evaluation of such data sets (Harrison, 2008).
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the response in neural activity to some behav-
ioral manipulation or stimulus, such as willing-
ness-to-pay or reward amount, and analyzed
models of the form:

NeuralActivity � �Behavior � �. (1)

Here, neural activity is the dependent variable
and � is the parameter of interest, in particular,
which brain regions significantly code value sig-
nals. Recent meta-analyses of this literature (now
amounting to over 200 independent data sets)
identify that activity in two brain areas, the ventral
striatum and the mPFC, is tightly correlated with
every known economic method for estimating the
values subjects place on choice objects—ranging
from consumable goods, to money lotteries, to
charitable donations, to durable goods, to social
preferences, to political preferences (Bartra,
McGuire, & Kable, 2013; Clithero & Rangel,
2013; Levy & Glimcher, 2012).

Building on these advances, neuroeconomists
began exploring whether this relationship could be
reversed for the purpose of explaining choice be-
havior.

Pr�Behavior� � �NeuralActivity � �. (2)

In this modeling approach, neural activity
(causally) determines the choice probability,
and the strength of this relationship is governed
by the parameter �. For example, in a landmark
study, Knutson et al. (2007) applied a logit

model to an fMRI data set and found that in-
centivized purchasing behavior can be predicted
by measures of neural activity in the mPFC and
the ventral striatum. Follow-up studies have
demonstrated similar results in binary choice
experiments over disparate objects (FitzGerald,
Seymour, & Dolan, 2009) and have even ex-
tended this analysis to market-level outcomes
(Falk et al., 2012; Genevsky et al., 2017; Gene-
vsky & Knutson, 2015; Venkatraman et al.,
2015).2

An obvious concern with equation (2) is that
there are a large number of potential neural
variables in an fMRI data set to use as predic-
tors, much larger than the number of choice
observations. This suggests that many neural
signals will be correlated with choice by
chance. The initial literature took a conservative
approach to this issue by defining regions of
interest either a priori or via independent local-
ization.3 In an effort to improve prediction rates,
more sophisticated methods for model selection
have been developed. For example, Smith et al.

2 See Berkman and Falk (2013) for a discussion of more
applications of this approach.

3 For instance, Levy et al. (2011) used an independent
sample to identify the regions of the mPFC and ventral
striatum to include in the model.

Figure 1. Choice prediction results (across subjects) from ordinal analysis of medial
prefrontal cortex activity (Levy et al., 2011). Blood-oxygenation-level-dependent (BOLD)
activity for each item was ranked (within subject). Choice sets with an ordinal distance of 19
consist of the two items with the highest and lowest BOLD measurement, whereas choice sets
with an ordinal distance of 1 consist of items that are adjacent in the ranking.
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(2014) used a shrinkage estimator to determine
which voxels to include as predictors.4

Regardless of the estimation method, analysis
based on the model (2) is inherently cardinal.
The parameter(s) � determine how choice prob-
abilities change in response to neural activity,
and these probabilities can then be used to pre-
dict choices out-of-sample. For instance, in the
study by Smith et al. (2014), the fitted proba-

bilities P̂ from the regression (2) are used to
code a predicted choice and then compared with
the choices from a holdout sample, yielding a
neurochoice prediction rate of 61% within-
subject.5 The estimates of � therefore determine
the relative weights of different brain areas,
voxels, or stimuli in determining choice. We
will use this cardinal framework to consider the
stochastic structure that underlies both behavior
and neural activity.

Measurement error in choice prediction.
One useful example of why it is important to
address the stochastic structure of a choice
model is the prevalence of measurement error in
fMRI data sets. Because neural activity is not
typically observed directly, only an indirect
measure of it is available for prediction (say via
the BOLD measure from fMRI). To model mea-
surement error, we follow the standard ap-
proach of appending a measurement error, �, to
our variable of interest.6

NeuralMeasure � NeuralActivity � �. (3)

In standard analyses based on equation (1),
measurement error is somewhat innocuous: any
error in the measurement of neural data will
simply end up in the error term of the regres-
sion,

NeuralMeasure � (�Behavior � �) � �

� �Behavior � (� � �). (4)

Though � clearly adds noise to the model,
thereby increasing standard errors, the estimate
of � is not directly affected. A number of meth-
ods have been proposed to address this issue in
standard fMRI analysis software, primarily re-
lying on the autocorrelation structure of the
measurement error (Lund, Madsen, Sidaros,
Luo, & Nichols, 2006).

In the choice prediction model (2), however,
the impact of measurement error is more nefar-

ious. Now the measurement error is embedded
in the explanatory variables of the model. We
can observe this by directly substituting in equa-
tion (3).

Pr�Behavior� � �NeuralActivity � �

� �NeuralMeasure � (��� � �)

(5)

� �NeuralMeasure � �̃. (6)

Because the error term �̃ (which includes the
measurement error) is now correlated with the
explanatory variable (via equation [3]), a criti-
cal exogeneity assumption of the regression
model is violated. This “error-in-variables”
problem biases the estimate of � toward zero
(Yatchew & Griliches, 1985).7 Not only does
this bias alter the predicted choice probability
given a change in the neural measure, but it also
means that inference on � for a given brain
region or voxel will be too conservative. On
average, this will lead to fewer rejections of a
false null hypothesis (i.e., increased “Type II
Errors”). In the section “Testing an NRUM
With Behavioral and Neural Measurements,”
we will demonstrate how the NRUM can be
used to address the measurement error problem.

Models of Stochastic Choice

The literature on modeling stochastic choice
consists primarily of two model classes that fall

4 A logit model comprising all voxels is evaluated, but
the model’s likelihood is penalized via a LASSO regression
to guard against overfitting. This penalization acts as a
model selection criterion, with the resulting estimates of
� � 0 only for some voxels.

5 Machine-learning algorithms can also be used to jointly
analyze (or weight) regions of activity within the mPFC to
classify whether a particular item was chosen, or not, from
a binary choice set (Kahnt, 2017, for a review). These
weights can then be applied to a test data set to predict
choice behavior. Krajbich et al. (2009) used such methods
to classify valuations in a public goods game with 60%
accuracy, whereas Tusche et al. (2010) observed classifica-
tion rates upward of 75% in a choice task over activities.
However, this binary classification does not provide relative
choice probabilities, only predicted outcomes. The former
plays a crucial role in modeling stochastic choice behavior.

6 See Greene (2003) for a textbook treatment of measure-
ment error.

7 Also see Ramsey et al. (2010) for a discussion of this
issue in dynamic causal modeling.
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under the technical definition of a RUM (Becker
et al., 1963). Consider a set of n items, indexed
i � 1, . . . , n. Denote Pi the probability that
alternative i is chosen from this set, or equiva-
lently, the frequency with which i is chosen on
repeated trials. A RUM posits the existence of a
vector of random variables u, with element ui,
such that

Pi � Pr �ui � uj, ∀ j 	 i�. (7)

Conditions placed on Pi determine whether ob-
served behavior is consistent with the principle
of utility maximization (Block & Marschak,
1959; Falmagne, 1978; McFadden, 2005).

The two approaches to modeling stochastic
choice, although both technically RUMs, are
distinct in interpretation. One class, known as
random preference models, posits that a choice
is represented by a preference relation (or util-
ities u) stochastically drawn from a set U which
obeys some underlying axioms (Gul & Pesend-
orfer, 2006; Loomes & Sugden, 1995). Each
alternative in a choice set is processed simulta-
neously according to this realized preference
relation. This approach allows for preferences
to vary from trial to trial for different realiza-
tions of u, but in a manner that is internally
consistent with the axioms that determine mem-
bership in U. Such models have important im-
plications for both model testing and normative
analysis, as they posit no violations of the un-
derlying axioms owing to stochasticity
(Loomes, 2005).

A second approach to modeling choice stochas-
ticity derives from the vast literature on stochas-
ticity in sensory perception (Fechner, 1860; Mc-
Fadden, 2001).8 A Fechnerian RUM holds that
choices can be described by a single “core” valu-
ation vi that is perceived or represented with error
�i for each item, such that ui � vi � �i. The
perturbed value is then compared, and the number
of choice errors (in violation of the ordering given
by vi) is governed by the magnitude of the differ-
ence vi � vj, @j � i. Therefore, the additive model
is described as cardinal (Batley, 2008).9 Empirical
studies that use the Fechnerian model include
Buschena and Zilberman (2000), Hey and Orme
(1994), Hey (1995), and Hey (2005), with the
negative result found in Agranov and Ortoleva
(2017) previously noted. Review articles that con-
trast the behavioral evidence for the two ap-

proaches can be found in Loomes (2005) and
Wilcox (2008).10

Intriguingly, support for both random pref-
erence and Fechnerian approaches can be
found in the neuroscience evidence (in so far
as neural evidence can be used to support an
economic model). It is widely held that the
activity of a neuron is governed by a funda-
mentally stochastic (thermodynamic) process,
and this stochasticity extends to the popula-
tions of neurons that act as basic computa-
tional units (Glimcher, 2005).11 It has also
been demonstrated empirically that the in-
stantaneous perception of the attributes of a
stimulus is stochastic even when all proper-
ties of the stimulus and state of the chooser
are held constant (Stevens, 1961). This sto-
chasticity in subjective perception has been
shown to be an obligate feature at all levels of
sensory processing (see Glimcher, 2011, for
an overview; Beck, Ma, Pitkow, Latham, &
Pouget, 2012; Woodford, 2014, for relation to
optimality), and this would necessarily lead to
stochasticity in preferences.12

However, the stochasticity of neural activity
extends beyond sensory processing, particularly
to the neural circuitry necessary for comparison
and implementation of motor actions. A class of
models of this process, referred to as bounded

8 See also Falmagne (1985), Stevens (1961), and Weber
(1834). For applications in the economics literature, see
Camerer and Ho (1994), Harrison and Rutstrom (2008),
Hey and Orme (1994), Johnson and Ratcliff (2013), and
Loomes (2005) for reviews.

9 A taxonomical issue currently exists between the theo-
retical and applied discrete choice literature in economics.
The applied literature classifies the additive model as an
RUM because it satisfies the definition (7). However, the
theoretical literature does not because the stochasticity in
the model leads to violations of the axioms underlying
membership in U. Here, we return to the standard definition
from Becker et al. (1963) used by the applied literature.

10 See also Apesteguia and Ballester (2018) for critical
issues with estimation.

11 Neural activity shows significant variation even under
conditions in which measurement error can be shown to be
near zero (Churchland et al., 2010, 2011; Tolhurst,
Movshon, & Dean, 1983). It is widely held that this is not
simply a high-dimensional signal of zero stochasticity pro-
jected imperfectly into a low-dimensional space via limita-
tions in measurement. For more on this issue, see Rieke et
al. (1997) and Shadlen and Newsome (1998).

12 To take one example, variability in the valuation of a
sweet-tasting liquid can arise from variability in the sensory
experience of sweetness, even when the objective sugar
concentration is held constant.
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accumulation models (BAMs), posits the dy-
namic accumulation of a decision signal to a
threshold given a value input.13 In the well-
known drift diffusion model (Fehr & Rangel,
2011; Ratcliff, 1978), the relative values of the
alternatives determine the slope of the accumu-
lation, which determines the choice probabili-
ties. A tight relationship exists between these
BAMs and the stochastic choice literature; the
choice probabilities of a BAM can be repre-
sented by a Fechnerian RUM, therefore imply a
cardinal random utility representation (Webb,
2018).14

The mixture of behavioral and neural evi-
dence for both a random preference and a Fech-
nerian RUM approach suggests that the least
restrictive econometric specification should be
composed of a stochastic valuation (which may
be restricted by a particular theory) and a sub-
sequent error term that is, in essence, cardinal
and strictly welfare decreasing. We stress that it
may, in some cases, be necessary to restrict the
econometric problem to a model with only one
(or a linear combination) of these sources of
stochastic choice for the purpose of identifica-
tion, depending on the nature of the data being
analyzed. Indeed this will be the case for our
current data set. However, we present here the
more general case as a starting point for theory
and note explicitly our identification assump-
tions.

Neural Random Utility Model

We now adapt the standard framework for
stochastic choice in economics, random utility
maximization, to a form that explicitly treats
subjective value as a stochastic neural observ-
able. We present the model for a binary choice
set {i, j}, and we observe repetitions of all
binary sets from the same subject. The exten-
sion of the model beyond binary choice is
straightforward, though we note special consid-
erations.

The subjective value of item i on trial t is
defined to be an observable random variable
vi,t � ��, with the vector of subjective values
denoted as vt � ��

n . In principle, vt is observ-
able in the firing rate activity of value-related
neurons.15 We assume vt is independent over
trials but not necessarily over items. Although
we do not yet formally specify a distribution for

vt, let us define �i,t as the difference between vi,t
and its mean E[vi,t], for each item,


i,t � vi,t � E[vi,t]. (8)

We emphasize that vi,t is the only observable
in equation (8), and we provide a distributional
assumption shortly.16 Note that the distribution
of vi,t puts no restrictions on the covariances
over items, allowing a random preference for-
mulation.17 We discuss this issue further in the
section “Normative Implications: Distribution
of Subjective Value.”

Once subjective values are instantiated in
neural activity, they must be compared and a
choice executed. This additional neural process,
which we refer to as the “choice mechanism,”
effectively compares subjective values in the
requisite circuitry for producing behavior. The
neural evidence suggests this comparison takes
place via an accumulation of vi,t to threshold in
dorsomedial and parietal regions of the cortex
(Basten, Biele, Heekeren, & Fiebach, 2010; Do-
menech, Redouté, Koechlin, & Dreher, 2018;
Hare, Schultz, Camerer, O’Doherty, & Rangel,

13 Neural evidence for such dynamics in neural activity
has been uncovered both in psychophysical and economic
choice tasks (Basten et al., 2010; Gold & Shadlen, 2007;
Hare et al., 2011), as well as behavioral evidence for the role
of decision dynamics and attention (Krajbich, Armel, &
Rangel, 2010; Milosavljevic, Malmaud, Huth, Koch, &
Rangel, 2010).

14 This also clarifies the relationship between BAMs and
the NRUM. Accumulation models place restrictions on the
form of the NRUM and will prove invaluable for exploring
a more structural approach to modeling decisions. However,
we do note that the NRUM brings a large econometric
toolbox to bear for relating neural observables to choice
prediction and for testing the predictions of more structural
approaches with weaker assumptions on functional forms.

15 Electrophysiological evidence for such observables
can be found in Padoa-Schioppa (2013) and Rich and Wallis
(2016).

16 One possible interpretation of E[vi,t] is a “core” value,
instantiated noiselessly by some biological mechanism, but
represented with error in the neural substrate under obser-
vation. This is not a view compatible with the biophysical
properties of neural processes. Instead, we interpret E[vi,t]
as simply the limiting quantity of the sample mean of vi,t

and our definition of �i,t in an additive specification is for the
purpose of exposition.

17 However, we do restrict the variance to be constant
over items. In addition, there is the question of whether the
central tendency of subjective value is stable or if it can be
manipulated through contextual effects; for the purposes of
this experiment, we assume a stable mean over trials.
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2011). Webb (2018) demonstrated that this pro-
cess is equivalent to a random utility formula-
tion with an additive noise term �i,t � �t � ��

n

that captures stochasticity in this maximization
operation. This yields the decision vector

ut � vt � �t, (9)

For a binary choice trial t, the subject chooses
i from the pair of items {i, j}t if

ui,t � uj,t

vi,t � �i,t � vj,t � �j,t.

yielding a probability of choosing i on trial t

Pij,t(vi,t, vj,t) � Pr{vi,t � vj,t � �j,t � �i,t}

�Pr{�vij,t � ��ji,t}, (10)

where �vij,t � vi,t � vj,t. The notation 	•ij
denotes the ijth item-pair difference throughout.
Because the differences in measurements of
subjective value determine these probabilities,
this model now exhibits properties of cardinal-
ity (Batley, 2008, p. 47).

Equation (10) is the conditional probability
of choosing i given a measurement of subjective
value during a choice. Before we arrive at a
specification suitable for our empirical applica-
tion, we must take two additional steps. First,
we will need to impose some distributional
structure on �t; therefore, we assume that the
difference in additive noise is independent over
item-pair and trial and distributed normally,
��ji,t 	 N�0, ��

2 �.18 This yields a probability
of choosing i

Pij,t�vi,t, vj,t� � ���vij,t

��
�, (11)

where 
() is the standard normal cumulative
distribution function.

Second, our experimental application at-
tempts to relate subjective value measures in the
absence of choice to subsequent choice behav-
ior. By design, we do not observe the realization
of subjective value vi,t on the trial t in which the
choice was made; therefore, specification (11) is
inappropriate for analysis. Though an observa-
tion of vi,t in synchrony with the choice of our

subjects would yield both the best predictive
results and sharpest inference, the choice prob-
ability can also be derived conditional on the
mean of subjective value E[vi,t] and not just its
realization on a choice trial.

To demonstrate this, let us assume the fluctuations
in subjective value around its mean, �, are distrib-
uted, N�0, �
� with covariance matrix ��. As our
experiment uses a binary choice environment,
the realizations of �
ij,t for different item-pairs
must occur on different trials t. Therefore, the
�
ij,t are independent over ij owing to indepen-
dence over trials, even for different item-pairs
that share an item.19 Therefore, �
ij,t is distributed
N�0, �


2 �, and this yields a probability of choos-
ing i,

Pij,t(E[vi,t], E[vj,t])

� Pr{E[vi,t] � E[vj,t] � 
j,t � 
i,t � �j,t � �i,t}

�Pr{E[�vij,t] � �
ji,t � ��ji,t} (12)

���E[�vij,t]

�
���
�, (13)

where �
��� is the standard deviation of the
sum of the two neural noise terms �
t and ��t.
This term reflects the degree of stochasticity in
choice owing to stochasticity in neural activity.
Clearly, predictive accuracy is worse under this
specification because �
��� � ��.

However, E[�i,t] is not an observable; there-
fore, equations (12) and (13) should be viewed
as the limiting probabilities given a sample
mean that approaches E[vi,t]. The sample an-
alog, derived from repeated measurements of
vi,t, is

18 There is little known about the appropriate distribution
of �t at this level of aggregation, though Webb (2018)
provided a derivation directly from BAMs. The assumption
of independence over item-pair is only made for conve-
nience, see footnote 19.

19 The extension of the model beyond binary choice
would have to account for a full covariance matrix for the
vector composed of the �
ij,t on each trial (similarly for
the ��ij,t). In principle, a full covariance matrix should be
identifiable for such a data set (Hausman & Wise, 1978;
Train, 2009) and the results that follow would have to be
argued in terms of this full matrix. The assumption of
normality for vt is again made for convenience. To our
knowledge, no study has yet examined the distribution of
the aggregate firing rates that make up subjective value.
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Pij,t(v�i, v� j) � Pr��v�ij � �v�ij � �
ji,t � ��ji,t�(14)

��� �v�ij

� �
���
�, (15)

where � �
��� ¡ �
��� as �
�ij ¡ 0. This is
the specification we will work from in our em-
pirical setting.

Testing an NRUM With Behavioral and
Neural Measurements

We now establish the NRUM as an econo-
metric toolset for relating neural observables to
choice prediction in an experimental data set. In
the section “A Cardinal Neural Observable,” we
apply the model to a combined data set of
choices and neural measurements from two
brain regions known to encode subjective value
(mPFC and striatum) and one control region in
the occipital cortex (OCC). A detailed descrip-
tion of the Levy et al. (2011) experiment, in-
cluding the BOLD measure of neural activity,
can be found in the Appendix section “The
Levy et al. (2011) Experiment.” The role mea-
surement error plays in the relationship between
the BOLD measure and choice behavior is ex-
amined in the section “Accounting for Measure-
ment Error.”

In the analysis, we treat the item-pair and the
two choices made in each pair as the dimensions
of our behavioral data set and pool item-pairs
over subjects. For 12 subjects, this yields n �
4,560 choices grouped into 2,280 pairs.20 Es-
sentially we are treating different subjects view-
ing the same item-pairs as equivalent to the
same subject viewing different item-pairs. Al-
though this allows each subject’s preferences—
therefore subjective valuations—to be idiosyn-
cratic, it does contain the implicit assumption
that the relationship between subjective valua-
tion, the BOLD measure, and the choice likeli-
hood is the same across subjects. We relax this
assumption in the section “Subject-Specific
Analysis” at the expense of a reduced sample
size.

A Cardinal Neural Observable

The RUM specifies that the difference in
utility influences choice likelihood, and there-
fore posits that utility is a cardinal quantity. To

establish that our neural observable is cardinal,
we must establish that neural measurements are
made on some scale in which the difference
between measurements is related to the likeli-
hood that a subject will switch their choice
behavior in repeated choice sets and that this
difference predicts choices beyond a simple or-
dering.

In the Levy et al. (2011) experiment, mea-
surements of BOLD activity from the mPFC
and the striatum were taken on 11 scanning
trials independently for each good over the
course of an hour. The measurements preceded—
and were independent of—the two choice trials
of interest. We use the time index m to denote
these measurement trials and use the general
notation Bi,m to denote a measurement from one
of these regions (we will report results for each
brain area separately).

We assume a linear form for the relationship
between the BOLD measurement Bi,m from a
brain region and subjective value vi,m.

Bi,m � a � �vi,m � �i,m.

The error term �i,m  N(0, ��
2 ) reflects the

error present in measuring neural activity in a
magnetic resonance imaging scanner; therefore,
a neural measure of subjective value Bi,m has
two sources of variance: the fluctuation in sub-
jective value on our measurement trials, and
measurement error. To arrive at a measure for
predicting choice between items i and j on an
independent trial t, we average over our 11
measurements.

B� i � a � �v�i � �� i, (16)

and then take the difference,

�B� ij � ��v�ij � ��� ij. (17)

Initially, we proceed under the assumption
that there is no sampling and measurement er-

ror, �B� ij � �E
�vij,t�. Although this assumption
is clearly not valid, it does lead to some useful

20 Striatal activation was not recorded for one subject, so
analysis on this brain area will use 4,180 choices grouped
into 2,090 pairs.
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intuition for the full model presented in the
section “Accounting for Measurement Error.”
Specifically, assuming an error-free measure of
the mean of subjective value allows us to use
specification (13). Substituting in equation (17)
yields a probability of choosing i,

Pij,t�E[�vij,t]� � ��E[�vij,t]

�
���
�

��� ��1

�
���

�B� ij�. (18)

Under this specification, the NRUM makes
three predictions about the likelihood that our
subject will choose item i. First, if behavior was
only determined by the ordinal comparison
vi,t � vj,t on a given choice trial, then the aver-
age measurement of each good over repeated
independent measurement trials should contain
no predictive information. By contrast, the

NRUM predicts that as �B� ij increases, the sub-
ject should be more likely to choose item i on
any given choice trial (Figure 2A).

Second, recall that subjects made choices
over each item-pair twice. Therefore, the like-
lihood that a subject switches their choice upon
repeated trials should decrease with the absolute

value of �B� ij.
Third, if we segregate our item-pairs into those

pairs in which the subject chose item i twice, once,

or never at all as a function of �B� ij, the NRUM
would predict P(twice) � P(once) � P(never) for
a positive difference in measured subjective value.
This prediction is depicted in the right panel of
Figure 2A, in which choices were simulated ac-
cording to the NRUM, then the numbers of twice,
once, and never observations were fit using an
ordered probit model.

Table 1 presents the estimates from bringing
equation (18) to our data set with the normal-
ization �
��� � 1. This standard identification
assumption means we are estimating only the
relative relationship between neural activity and
the choice probabilities. We also included a
specification with a constant term c predicted to
be zero by the model ��c �

��1

�
���
�B� ij�. For both

the mPFC and the striatum, the estimate for ��1

is positive; therefore, the relationship between

the difference in neural measurement (�B� ij) and

the probability of choosing an item is indeed
monotonic (see Figure 2B for the mPFC). As
might be expected, no such relationship is found
in the OCC control region (see Table 1).

To test the second prediction, we repeat the
analysis conducted by Agranov and Ortoleva
(2017) on their lottery choice data set. An indi-
cator variable codes item-pairs in which sub-
jects switched their choice on repeated trials.
Table 2 presents the results of a random-effects
generalized least squares regression of this in-

dicator variable on |�B� ij | . A clear negative
relationship between the magnitude of the dif-
ference in BOLD activity and the likelihood of
the subject switching their choice is observed in
this sample. This lies in contrast to the results
from Agranov and Ortoleva (2017), which
found no relationship between a behaviorally
established measurement of subjective value
and choice stochasticity.

However, the third prediction of the NRUM
does not fare as well, at least at first glance. The fit
of the ordered probit model to the number of
observed choices has a clear misordering; subjects
are more likely to choose an item twice, than

never, than once for positive �B� ij. We observe too

few once choices when �B� ij is small, too many
when it is large, and far too many never choices

when �B� ij is large and positive (similarly for
twice when it is large and negative). This apparent
contradiction of the NRUM arises because we
(like much of the neuroscience literature working
with choice data) have so far assumed no error in
both our BOLD measurement and the construc-

tion of our neural measure �B� ij. The following
section addresses this issue.

Accounting for Measurement Error

We can identify at least three source of mea-
surement error in our data set. First, because we
are not measuring subjective value during a
choice trial, the realizations of vi,m we do mea-
sure are not the ones related to choice on trial t.
This component of our measurement error is the

sampling error present in v�i and is denoted by 
�i
in equation (8). Second, we should also allow
for error in the conservative procedure for iden-
tifying and constructing a single neural time-
series from the 250,000 we measured. The de-
gree to which the mean activity level of our
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measure captures the neural encoding of subjec-
tive value for consumer items depends on our
ex-ante restriction to the mPFC and the striatum
and the accuracy with which our first procedure
identifies the relevant voxels. This source of
variability is captured in �i,m. A third source of
noise doubtlessly results from the technical lim-
itations imposed by measuring neural activation
with an fMRI scanner (Logothetis, 2002),
which is also captured in �i,m.

The effect of measurement error in nonlinear
models (such as the probit) is larger than in the
linear model but generally follows the same intu-
ition: the data are overdispersed along the dimen-
sion of the independent variable and the slope
parameter is biased toward zero (Yatchew &
Griliches, 1985). Formally, we can no longer work

directly from specification (13) because Pij,t��B� ij� is
no longer equivalent to Pij,t�E
�vij,t��. This means
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Figure 2. Analysis of (A) a simulated neural random utility model (NRUM), (B) the medial
prefrontal cortex activity from the experimental data set, and (C) a simulated NRUM with
measurement error (w/ Meas. Err.). Left panes: The fit of the probit model from (18),

assuming no measurement error (i.e., �B� i � �E
�vij,t�). Right panes: The fit of an ordered
probit model for the probability of observing the ith item in an ij pair chosen twice, once, and
never. The NRUM was simulated with ��1 � 10, �
��� � 1, and �e � 0 or �e � 5 (A or
C, respectively). See the online article for the color version of this figure.
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our estimate of ��1 in the section “A Cardinal
Neural Observable” is biased toward zero, and
the severity of this bias increases in the degree
of measurement error. As our hypothesis pre-
dicts a positive value for ��1, inference per-
formed on this biased estimate is too conserva-
tive, and pursuing a less-biased estimate will
yield improved inference and choice prediction.

Recalling equation (16), measurement error
enters our specification as an independent item-
specific error term.21 If we proceed with a spec-
ification derived from substituting in our mea-
sured neural activation into the sample analog
(14), the conditional probability of choosing i is

P�yij,t � i��B� ij�
� P���1��B� ij � ��� ij� � �
�ij � �
ji,t � ��ji,t�
�P���1�B� ij � eij � �
ji,t � ��ji,t�,

with the sources of measurement error grouped

together in the variable eij � ��1��� ij � �
�ij.

The fact that subjects chose between each
item-pair twice means that eij is constant over
both choice trials. This means we have two
independent choices for each realization of the
measurement error. Or said another way, the eij

are (perfectly) correlated over repeated choice
trials. We can use this correlation pattern to
achieve more efficient (and less biased) esti-
mates of ��1—as well as an estimate of the
standard deviation of the measurement error—
provided we specify and integrate out a distri-

bution for eij. We assume eij 	
iid N�0, e

2�; there-
fore, our specification takes the form of a
random-effects probit model, however with two

21 This form of measurement error is referred to as “clas-
sical measurement error” because the error is additive and
independent of the unobserved quantity (Carroll, Ruppert,
Stefanski, & Crainiceanu, 2006). It specifies that our neural

measurement �B� ij has a larger variance than the unobserved
quantity of interest, a natural assumption in the context of
measuring neural activity with a noisy fMRI signal.

Table 1
NRUM Estimates With and Without a Correction for Measurement Error

Coefficients
(by brain region)

Baseline probit
Probit with measurement

error correction

No constant Constant No constant Constant

mPFC (n � 4,560)

��1 .24 (.10) .24 (.10) 1.16 (0.52) 1.16 (.51)
c �.01 (.08) �.06 (.37)
�e 4.73 (0.37) 4.73 (.37)

LL �3,140.46 �3,140.22 �2,272.22 �2,272.09
BIC 6,290 6,297 4,561 4,570

Striatum (n � 4,180)

��1 .69 (.17) .69 (.17) 3.32 (0.83) 3.32 (.85)
c �01 (.08) �.02 (.38)
�e 4.67 (0.40) 4.67 (.40)

LL �2,841.03 �2,840.98 �2,063.05 �2,063.04
BIC 5,690 5,699 4,143 4,151

OCC (n � 4,560)

��1 .05 (.08) .05 (.08) .25 (.36) .25 (.36)
c �.01 (.08) �.06 (.37)
�e 4.76 (.37) 4.76 (.37)

LL �3,159.22 �3,158.96 �2,282.65 �2,282.50
BIC 6,327 6,335 4,582 4,590

Note. Clustered standard errors are in brackets. NRUM � neural random utility model; mPFC � medial prefrontal cortex;
LL � Log Likelihood; BIC � Bayesian information criterion; OCC � occipital cortex.
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important caveats that differ from standard ap-
plications.22

(1) �B� ij and eij are not independent. This
means that the random-effects probit es-
timate of ��1 will also be biased toward
zero, though not as severely as a probit
with no random effect. Therefore, we can
only partially correct for the bias intro-
duced by measurement error.

(2) The eij are not independent over choice
pairs. As the neural measurement takes
place at the level of the individual item,
when differencing the measurement for
an item-pair, there is correlation in the
random effect eij between item-pairs that
share an item. For instance, e12 and e13
are correlated because they share the
measurement of Item 1. This means a
random-effects estimate is inefficient,
and standard errors will be biased toward
zero if not controlled for. In addition, the
estimate of �e will be biased positively
(Wang, Lin, Gutierrez, & Carroll, 1998).

To account for these issues, we pursue a hybrid
approach in which we estimate the random-
effects model clustered at the level of the item-
pair (to capitalize on the common measurement
error over choice trials within an item-pair, par-
tially reducing the bias and achieving more ef-

ficient estimates), and then correct our standard
errors for inference using a multiway clustering
approach (to account for the nonindependence
of the differenced measurement errors). The
item-pair level likelihood is then given by

P�yij,1, yij,2 |�B� ij�

��
��

� e�eij ⁄ 2e
2

2�e
��

t
F�yij,t, �B� ij��deij, (19)

where

F(y, x) � ����1(x � eij)

�
���
�y

��1 � ����1(x � eij)

�
���
��1�y

.

We also include a specification with a constant
term (predicted to be zero).

Including a correction for measurement error
substantially increases the fit of the NRUM (see
Table 1), with the log-likelihood(s) improving
by nearly a factor of 1

3. The estimated coeffi-
cients for ��1 are also substantially higher than
our baseline specification, increasing by
roughly a factor of 5 in both the mPFC and the
striatum. This indicates that the relationship be-
tween neural activity and choice probability is
severely biased when measurement error is un-
accounted for. Figure 3 depicts the fitted prob-
ability of choosing item i as a function of the
difference in neural activity (generated under
the assumption that the random-effect eij � 0).
Accounting for measurement error yields a sig-
nificant increase in the magnitude of the rela-
tionship between neural activity and choice
probability compared with our earlier analysis
in the section “A Cardinal Neural Observable.”
Moreover, the difference in neural activity
yields improved model fit compared with a sim-
ple ordinal ranking of the BOLD activity, again
establishing the cardinality of our neural mea-
sure.

22 A random-effects model is robust to the distributional
assumption for the random effect (here, measurement error)
provided it is not highly asymmetric (Neuhaus, McCulloch,
& Boylan, 2011).

Table 2
Estimates of Random-Effects GLS of Stochastic
Choice Indicator on Difference in BOLD Activity,
as in Agranov and Ortoleva (2017)

Estimate P value

mPFC (n � 2,280)
Constant .103 .00

|�B� ij | �.031 .01

Striatum (n � 2,090)
Constant .102 .00

|�B� ij | �.040 .09

OCC (n � 2,280)
Constant .087 .00

|�B� ij | .013 .50

Note. The random-effect and clustered standard errors are
implemented at the subject level. GLS � generalized least
squares; BOLD � blood-oxygenation-level-dependent;
mPFC � medial prefrontal cortex; OCC � occipital cortex.
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In both the mPFC and the striatum, the stan-
dard deviation of the measurement error �e is
estimated to be 4.7 times �
���. Therefore in
both specifications, over 95% of the variance in
the model is attributed to measurement error. To
verify that measurement error is generating the
results observed in the section “A Cardinal Neu-
ral Observable,” we introduced measurement
error into the simulated data reported in Figure
2A and repeated the original analysis. These
simulated results now match our empirical find-
ings (Figure 2C). Because measurement error
has the effect of “smearing” the observed once

choices over the range of observed �B� ij, a
choice pair in which the distributions of subjec-
tive value are close together (small
E
�vij,t�)—likely resulting in a once outcome—

could yield a large �B� ij because of measure-

ment error. This occurs because the degree of
measurement error has no effect on the number
of once choices observed, only on where they

appear on the �B� ij axis. Although this degree of
measurement error is striking, and verified by sim-
ulation (Figure 2C), we should note again that this
estimate is based on a misspecification of the
random effect.

Subject-Specific Analysis

In principle, a subject-specific analysis is use-
ful to consider. Commensurate with existing
data and previous fMRI studies (Logothetis,
2003), it is likely that different subjects have a
steeper mapping between the BOLD measure-
ment and neural activity than do others. The
bulk of this difference is typically held to reflect
a technical feature of the interaction between

Figure 3. The probability of choosing an item depends on the difference in medial prefrontal
cortex activity between items. The fitted probabilities are generated using a standard probit
estimate for ��1, an estimate for ��1 corrected for measurement error (assuming the random
effect is zero), and a standard probit estimate of choice on the ordinal difference in the
blood-oxygenation-level-dependent (BOLD) ranking. The shaded areas depict the fitted
probabilities derived from the 95% confidence intervals of the estimates. See the online article
for the color version of this figure.
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the scanner and the subject: the subject-specific
coefficient describing the coupling of neural
activity to the blood flow rate measured by
fMRI. We can capture such heterogeneity by
allowing equation (16) to vary by subject s,

Bs,i,m � a � �svi,m � �s,i,m (20)

�B� s,ij � �s�v�s,ij � ��� s,ij, (21)

The parameter �s is therefore a subject-specific
relationship between the neural measurement and
the subjective value. We can estimate �s

�1 through

a subject–�B� ij interaction term using specification
(19) on the full sample, however with only 380
observations per subject.

Breaking up the sample into so few observa-
tions per subject reveals the limits of discrete
choice estimation methods in small samples.
For the mPFC, six of the subjects yield pos-
itive and significant estimates of �s

�1, whereas
six are not significantly different from zero (see
Table 3). Although under the null hypothesis we
should only expect one significant subject,
rather than six, this is still a substantial degree
of variance in the model.23 Results from the
striatum display a similar pattern, though with a
somewhat larger amount of variation. Nine of
11 estimates are positive, though only two sig-
nificantly so at the .10 level. In both the mPFC
and the striatum, the Akaike Information Crite-
rion is higher than for the pooled estimates,
even after correcting for measurement error. We
also found no significant relationship between
the size of the regions of interest for each sub-
ject and the variance of �s

�1 (Table 5). This
suggests that a subject-specific estimate of the
relationship between neural activity and choice
is limited in small samples and that pooling data
to estimate this relationship yields improved fit
(provided preferences are allowed to vary
across subjects).

Application: In-Sample Choice Prediction

The NRUM yields an estimated relationship
between neural activity (or other observables) and
choice behavior. In the analysis that follows, we
compare the performance of three models:

• NRUM: subject-specific estimates (see Ta-
ble 1);

• NRUM with measurement error correction:
subject-specific estimates corrected for
measurement error (see Table 3); and

• NRUM � observables: corrected subject-
specific estimates with additional economic
observables included as regressors: the
price of the item (a market-based method)
and its “Amazon star” rating (a stated-
preference method).24

The estimates from each of these models yields
a fitted choice probability for each choice pair

P̂ij, and these probabilities can be combined
with a prediction rule to assess the model’s true
predictive performance for any set of neurobi-
ological observables. Numerous methods have
been proposed to evaluate the performance of
discrete choice models and the literature. For
instance, to determine whether a cardinal pre-
diction rule captures stochastic choice behavior,
some method for pooling over discrete choices
is required (after all, we wish to compare a
probability with a binary outcome). The sim-
plest way to achieve this is to average over
repeated choices from the same choice set.25

For this reason, we will examine the results
from different choice prediction rules when re-
peated choice trials are treated both indepen-
dently and jointly. For exposition, we will focus
on in-sample prediction rates for measurements
from the mPFC.

23 Monte Carlo simulations verify the loss in efficiency
due to reducing observations. Simulated choice and neural
data with �s

�1 � 10 and measurement error from the section
“Accounting for Measurement Error” lead to 5% of the
�s

�1 estimates less than, but not significantly different from,
zero (from a total of 1,000 simulations).

24 The “Amazon star” rating is the aggregation of user
ratings that can be found on the item’s description on amazon.
com. Both of these measurements have the drawback of being
population-level variables that represent (to some degree) the
aggregation of preference across all consumers, limiting their
ability to predict individual choices. However, both of them
were significant predictors. The Amazon rating varied posi-
tively with the choices of our subjects, suggesting some ho-
mogeneity in the preferences of New York University under-
grads, whereas prices varied negatively with choice. One might
expect subjects to be choosing high-priced goods (which they
receive at no monetary cost in the experiment), but likely
reflects the popularity of the CDs in our choice set, a relatively
inexpensive item.

25 For another method that pools “locally” over nearby
choice sets with similar predicted probabilities, see Smith et
al. (2014).
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Treating Each Choice Trial Independently

We first examine in-sample predictive perfor-
mance in which each trial is treated indepen-
dently, regardless of whether it comes from the
same choice set, and consider the following
prediction rules:

• Bayes classifier: This is the prediction rule
typically reported in statistical software.

The fitted probabilities P̂ij codes a pre-

dicted choice ŷij,t � 1 if P̂ij � 0.5 ∀t,
ŷij,t � 0 otherwise. The prediction is then
compared with the observed choice yij,t and
the rate of successful predictions reported.
The Bayes classifier essentially nullifies the
cardinality of the analysis and magnifies
the sign difference of the neural observable

(i.e., �̂�1�B� ij � 0) P̂ij � 0.5) yielding a

deterministic prediction (i.e., all trials from
the same choice pair will have the same
prediction).

• Bernoulli prediction rate: The predicted prob-
ability of the observed outcome for choice

pair ij on trial t is yij,t P̂ij � �1 � yij,t��1 �

P̂ij�. Averaging this predicted probability
over all ij and t gives the proportion of suc-
cessful predictions if each trial is treated as an
independent draw from a Bernoulli distribu-

tion with probability P̂ij.
• Cramer’s �: Let �P� and �P� denote the aver-

age predicted probability on trials in which
yij,t � 1 and yij,t � 0, respectively. Then,
� � �P� �

�P� � 
0,1� reflects the ability of
the model to discriminate between outcomes

Table 3
Subject-Specific Estimates From the NRUM (After Correcting for Measurement Error)

Coefficient Est. SE P value Coefficient Est. SE P value

mPFC (n � 4,560)
c1 .03 1.14 .98 �1

�1 �1.17 1.07 .27
c2 �.15 1.25 .91 �2

�1 .66 2.89 .82
c3 �.07 1.27 .95 �3

�1 �3.25 2.36 .17
c4 �.34 1.17 .77 �4

�1 10.14 2.90 .00
c5 .08 1.22 .95 �5

�1 1.39 .57 .02
c6 �.07 1.22 .95 �6

�1 �3.23 2.50 .20
c7 �.14 1.30 .91 �7

�1 2.78 3.30 .40
c8 .41 1.22 .73 �8

�1 10.39 3.53 .00
c9 �.18 1.18 .88 �9

�1 4.98 2.38 .04
c10 .69 1.24 .58 �10

�1 5.01 1.39 .00
c11 .07 1.23 .95 �11

�1 2.61 3.18 .41
c12 �.44 1.14 .70 �12

�1 13.04 3.80 .00
�e 4.53 .38

LL � �2,197.56, AIC � 4,605

Striatum (n � 4,180)

c1 �.05 1.21 .97 �1
�1 1.23 2.23 .58

c2 �.20 1.32 .88 �2
�1 5.66 4.67 .23

c3 .07 1.31 .96 �3
�1 2.88 5.26 .58

c4 .06 1.27 .96 �4
�1 9.44 4.59 .04

c5 .45 1.33 .74 �5
�1 4.53 1.47 .00

No striatal data for Subject 6

c7 �.08 1.34 .95 �7
�1 3.55 1.82 .05

c8 .01 1.30 .99 �8
�1 �4.60 5.44 .40

c9 �.01 1.15 .99 �9
�1 5.43 3.65 .14

c10 �.00 1.28 1.00 �10
�1 3.24 1.90 .09

c11 .03 1.27 .98 �11
�1 �.19 3.10 .95

c12 �.12 1.16 .92 �12
�1 3.52 4.02 .38

�e 4.60 .48
LL � �2046.42, AIC � 4,301

Note. NRUM � neural random utility model; LL � Log Likelihood; AIC � Akaike Information Criterion.
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and measures the proportion of total variation
in y that is “explained” (Cramer, 1999). A
� � 0 represents the null model predicting at
chance, whereas � � 1 represents perfect
discrimination.

Results from the prediction rules are pre-
sented in Figure 4. The improvement granted by
the correction for measurement error can be
seen in the results for Cramer’s �. The correc-
tion improves the discriminability of the
NRUM to 0.16, an improvement of 0.10. Com-
pared with the prediction rate of 55.7% in the
work by Levy et al. (2011), in-sample predic-
tion rates increase to 57.9% using the NRUM
estimates corrected for measurement error. The
naive prediction rate for the NRUM estimates is
60.3%, with the improvement over the Levy et al.
(2011) analysis coming from the three subjects
with negative estimates of ��1.26 This marginal
improvement in prediction rates highlights the
limitations of assessing a cardinal model when
each choice is treated independently.27

Moreover, note that these prediction rates are
still lower than those derived from a model that
only includes the price and quality observables
(64.5% and 65.4%, depending on the prediction
rule). Combining the neural measurements with
these additional variables increases prediction
rates further to 69.6% and 71.0% (depending on
the prediction rule) and significantly improves the
discriminability of the model, suggesting the indi-
vidually measured neural activity contains infor-
mation orthogonal to the aggregate observables.

Treating Repeated Choice Trials Jointly

To assess the ability of a cardinal model to
capture stochastic choice behavior, we propose
two possible methods for comparing predictive
performance when repeated choice sets are
treated jointly. The first is conditional on the
choice outcome, the second is conditional on
the choice prediction.

Conditional on choice outcome. Let the
vector zij � {0, 1, 2} represent whether item i
was chosen never, once, or twice from a choice
pair ij. Let N denote the total number of choice

pairs, and �2 �
�1zij�2

N the proportion of twice
observed in the data set, with �1, �0 defined
accordingly. The predicted probability of the
observed outcome for choice pair ij is given by

Pij
* � �2 � �zij � 1��P̂ij

zij�1 � P̂ij�2�zij. Averaging
this predicted probability conditional on the
outcome then gives a measure of how well the
model predicts the sample of observed out-

comes. For example,
��ij:zij�2�Pij

*

#�ij:zij�2� is the average
probability of a correct prediction of a twice
outcome. However, this approach ignores the
fact that outcomes in the sample occur in dif-
ferent proportions.28

Conditional on choice prediction.
Consider a predicted choice ẑij � �0, 1, 2�
drawn from the binomial distribution of size 2,

with probability of success P̂ij. A correct pre-
diction of, for example, ẑij � 2 would be ob-

served with probability P̂ij
2 for choice pairs on

which a twice outcome occurred, and 0 other-
wise. Summing this prediction rate over all

choice pairs, and dividing by �ij P̂ij
2, therefore

“weights” predicted probabilities by the propor-
tion in which the outcomes are observed in the
data. For intuition, consider taking R draws of
ẑij. The measure is equivalent to calculating the
number of correct predictions in this simulated
sample, conditional on the prediction being
twice, once, or never.

The distinction between the two prediction
rules is important, because for our entire sam-
ple, the frequency of never is 46.0%, once is
9.3%, and twice is 44.8%. If each individual
choice were predicted at chance, we would pre-
dict never on 1

4 of trials, once on 1
2, and twice on

1
4, and we would be correct on 1

4 � 46.0 �
1
2 � 9.3 � 1

4 � 44.8 � 27.4% of trials. There-
fore, the prediction rates arrived at by chance
depend on the distribution of never, once, or
twice in the data set. In such a null model,

P̂ij � 1
2, and the predicted probability of a twice

26 In comparison, Smith et al. (2014) reported a 61.3%
out-of-sample prediction rate, whereas the rate reported here
is in-sample. This improvement in their choice prediction
likely arises from a more sophisticated aggregation of the
BOLD data than used in this study.

27 All of these results are robust to reserving half of the
sample for estimation, then implementing the prediction
exercise on the holdout sample.

28 For a similar argument in the case of an independent
binary choice trial in which the observed outcomes are not
in equal proportion, see Cramer (1999).
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outcome is P̂ij
2 � 1

4. Therefore, the prediction
rate conditional on the prediction yields

�ij 1zij�2P̂ij
2

�ij P̂ij
2

�

1
4�ij 1zij�2

�ij
1
4

�

1
4�N

�ij
1
4

� �,

the proportion of twice outcomes observed in
the sample. As the predictive power of the
model improves, this measure approaches 1.

However, an ordinal prediction based solely
on the ordered BOLD activity, such as in the
analysis by Levy et al. (2011), predicts an item
will be chosen either twice or never, and cannot
account for trials in which an item was chosen
only once. As the NRUM uses the cardinal
difference in valuations to modulate the choice
probabilities, it can be combined with the above
prediction rules to predict such behavior.

The results from this exercise are reported in
Table 4.29 We find that the NRUM predicts
28.6% of such trials observed in the data set,

compared with 0% for the ordinal model. Here,
again, we see the (often overlooked) effect of
measurement error in the observable. Because
our measurement error correction increases the
discriminability of the predicted probabilities, it
predicts fewer once outcomes compared to the
uncorrected estimates and the null model. But
because the correction only measures the vari-
ance of the measurement error, as opposed to its
realization on any trial, there are still many once
outcomes observed in which the predicted prob-

ability P̂ij is near 0 or 1, decreasing the predic-
tion rate of once outcomes from its upper bound
of 50%. This improvement in discriminability,
however, does improve the number of twice and
once predictions (45.0% vs. 30.8%) and was
also more accurate conditional on whether an
item was predicted to be chosen never or twice
from a pair (56.8% vs. 51.8%, and 56.1% vs.
50.8%).

29 For comparison purposes, we also consider the null
model (randomly selecting one item from each choice pair)
and known benchmark model that sets the probability of
choosing an item at 1 when it was chosen twice, 0.5 when
it was chosen once, and 0 when it was never chosen from a
pair.

Figure 4. Prediction performance if each choice trial is treated independently. NRUM �
neural random utility model; w/m.e. � with measurement error. See the online article for the
color version of this figure.

62 WEBB, LEVY, LAZZARO, RUTLEDGE, AND GLIMCHER

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.



Application: Estimating Demand

One proposed advantage of neuroeconomic
methods is a richer data source on which to
assess the demand for new products (Ariely &
Berns, 2010). Consider a standard demand fore-
casting exercise for a new product i. A re-
searcher sets out to assess the change in demand
for this product from manipulating a character-
istic (e.g., quality or price). Assume that this
manipulation increases the underlying valuation
of this product from vi to vi

′. The section “Ac-
counting for Measurement Error” details how
the presence of significant error in neural mea-
surements will bias the estimates of these mar-
ginal effects.

To clarify this point, suppose the researcher
has access to neural measurements Bi and Bi

′ to
assess this manipulation. In addition, they make

a neural measure for a reference product j,
which for the sake of argument we normalize to
Bj � 0. The true change in demand, as a function of
the neural measurements, is thus Pi�Bi

′� � Pi�Bi�
(Figure 5, solid black line). Note that the change
in demand depends on the magnitude of the
measurement. This relation between the magni-
tude of the marginal effect and the location of
the measurement is a feature of any demand
prediction exercise based on a discrete choice
model.

For instance, the NRUM provides a predicted

choice probability, P̂i�Bi�, as a function of the
neural measure and the estimated marginal effect.
Therefore, the predicted change in demand from

the manipulation is given by P̂i�Bi
′� � Pi�Bi� (Fig-

ure 5, dashed line). Even a small increase in neural
response to the manipulation, Bi

′, will lead to

higher predicted demand P̂i�Bi
′� � Pi�Bi� � 0.

However, the relation between the marginal
effect and location of the measurement is also
why measurement error can impact a demand
prediction exercise. In a “naive” model that
does not account for measurement error, the
predicted probability is constructed via an esti-
mate �̂�1 that is biased toward zero. In the
absence of a correction for this error, the pre-

dicted demand P̂i�Bi
′� is (weakly) smaller than

the true demand Pi�Bi
′�. The magnitude of this

gap also depends on the difference between the
neural measures. For some differences in the
neural measurement, the naive analysis will un-
derpredict the change in demand from the prod-
uct manipulation (Bi to Bi

′). But suppose the

Table 4
Comparison of Choice Prediction Results for Repeated Choice Trials

Model Average

Prediction rate (%)

Conditional on prediction
Conditional on choice

outcome

Never Once Twice Never Once Twice

Null 27.4 46.0 9.3 44.8 25 50 25
Levy and Glimcher (2011) 51.1 51.2 — 50.5 56.3 0 56.2
NRUM 31.6 51.8 9.3 50.8 30.8 47.0 29.7
NRUM w/m.e. correction 42.8 56.8 9.3 56.2 45.0 28.6 43.2
NRUM � observables 59.5 72.4 11.5 64.8 64.7 20.0 62.2
Known 95.2 100.0 95.1 100.0 50.0 100.0

Note. NRUM � neural random utility model; w/m.e. � with measurement error.

Table 5
Number of Voxels in Each Region of Interest

Subject mPFC Striatum

1 1,985 1,258
2 2,019 1,111
3 370 138
4 130 346
5 1,953 415
6 2,640 —
7 3,040 168
8 1,340 410
9 3,272 971

10 3,262 432
11 3,611 604
12 600 284

Note. mPFC � medial prefrontal cortex.
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researcher further manipulates the product,
yielding a larger neural response Bi

′. Now the
naive analysis overpredicts the change in de-

mand P̂i�Bi
′′� � P̂i�Bi

′� relative to the true change
Pi�Bi

′′� � Pi�Bi
′�. As the correction for measure-

ment error offered by the NRUM reduces the
gap between the true and predicted probabili-
ties, it yields a predicted change in demand that
is closer to the true demand.

Our experimental data set provides an oppor-
tunity to quantify the degree of this bias. The
sample of choice objects contained five 50/50
lottery tickets over different dollar amounts
($10, $15, $20, $25, and $30 if win, and $0 if
lose), so we can analyze the change in demand
as the amount of the winning outcome is in-
creased, relative to the reference $10 lottery.
Because the lottery amounts are monotonically
increasing, subjects with completely transitive
preferences should always choose the higher
lottery (relative to the $10 reference lottery).
Indeed, this is what we find in our data. Figure
5 also reports the predicted probabilities from
the NRUM with and without the measurement
error correction, taken at the average BOLD
measurement for each lottery (across measure-
ment trials and subjects). As expected, the de-
gree of bias due to measurement error is large.
For the baseline probit model, the predicted
change in demand for the larger lotteries is

minimal (2% in mPFC and 5% in striatum),
considerably understating the change in demand
for the larger lotteries. By contrast, the NRUM
with measurement error correction is larger
(roughly 10% in mPFC and 20% in Striatum).

This example illustrates a fundamental issue
with predicting discrete choice outcomes in the
presence of measurement error. Given the degree
of measurement error we find in our neural mea-
surement, it is paramount that prediction exercises
account for this bias in the estimated relationship
between neural activity and choice behavior. At
the very least, the bias correction proposed in the
section “Accounting for Measurement Error”
should be considered in future prediction exer-
cises.

Normative Implications: Distribution of
Subjective Value

The general formulation of an RUM places
no a priori restriction on the distribution of
utilities (Becker et al., 1963). In this version of
the NRUM, we have attempted to formulate sub-
jective value as generally as possible so that it
might encompass the two predominant views
about stochastic choice in the economics litera-
ture.

The NRUM is general enough to allow for a
random preference interpretation because no re-

Figure 5. Effect of measurement error on product demand prediction. mPFC � medial
prefrontal cortex; M.E. � measurement error. See the online article for the color version of
this figure.
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striction is placed on the distribution of vt, par-
ticularly its within-item covariances. Therefore,
the stochastic valuations of each alternative can
be correlated in accordance with the require-
ments of a particular random preference formu-
lation. Of course, it is also possible to impose
independence directly on vt, yielding a model in
which the stochastic valuation of each alterna-
tive is processed independently. Because the
NRUM renders the covariance matrix of vt em-
pirically observable, it is possible to differenti-
ate between these views with an appropriate
data set. In this study, as the subjective values of
items were measured independently, in isola-
tion, and on different trials, we can safely as-
sume that vi,m and vj,n are independent over
different measurement trials m and n.30

Even after allowing for a random preference
specification for subjective value, however, the
NRUM still incorporates a Fechnerian stochas-
tic element, modeled via the additive random
vector �t. This error term arises from stochas-

ticity in the choice process downstream from
valuation regions. The distinction between these
two neural sources of stochasticity has critical
normative implications. If �� � 0, then all
choice stochasticity is due to variation in sub-
jective value, and choice can be defined as
optimal (in the traditional economic sense) be-
cause choosers then act to maximize their real-
ized, albeit stochastic, subjective values. How-
ever, if �� � 0, then some choices can be
classified as errors arising in the neural imple-
mentation of the maximization operation and
the execution of the choice behavior. Thus, the
relative sizes of �
 and �� reflect the degree
to which stochasticity in choice can be strictly

30 In an alternative data set in which the subjective values
of both items were measured simultaneously (i.e., m � n),
this assumption would not be feasible, thus random prefer-
ences should be accounted for in the modeling. Examples of
such studies include Chib, Rangel, Shimojo, and O’Doherty
(2009) and Levy and Glimcher (2011).

Figure 6. Region-of-interest localizations for Subjects 1, 2, and 3. Activity from these
regions were used to define Bs,i,m. See the online article for the color version of this figure.
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viewed as welfare decreasing in a given neural
data set. Evidence from perceptual neuroscience
(in which there is an objectively “correct” an-
swer) identifies that most of the variance in
choice stochasticity can be attributed to brain
areas encoding stimulus value, suggesting less
than 10% of choice stochasticity can be attrib-
uted to downstream neural circuitry that imple-
ments the choice (Drugowitsch, Wyart,
Devauchelle, & Koechlin, 2016; Michelson,
Pillow, & Seidemann, 2017).

We should note that in all likelihood, v and �
are the product of realizations at multiple points
in the human nervous system. Although we are
unable to fully differentiate between these two
sources of variance in this specific study be-
cause we do not make independent measure-
ments at multiple stages along the pathways that
represent subjective value, we observe stochas-
tic choice behavior that has features of an ad-
ditive random utility specification: a larger dif-
ference in subjective value makes an item more
likely to be chosen. Our own conviction, which
stems from an amalgamation of the economic
and neurobiological literature, is that a model
which incorporates both classes of stochasticity
will most closely approximate the structure of
human choice behavior. We note that anchoring
our model to this conviction effectively posits a
distinction between the fraction of choice sto-
chasticity that can be attributed to stochasticity
in preference and the fraction that can be attrib-
uted to errors induced by the choice mechanism.
This distinction has clear welfare implications
that would necessarily be of interest as more is
learned about these sources of stochasticity in
choice behavior (Bernheim, 2009).

Conclusion

In this article, we have proposed a cardinal
econometric framework, the NRUM, for relat-
ing neural observables to stochastic choice be-
havior. The NRUM specifies the sources of
stochasticity present in a measurement of neural
activity, incorporating both the random prefer-
ence and the Fechnerian approach to modeling
stochastic choice behavior, and examines how
these sources interact within an experimental
paradigm for the purposes of choice prediction.

A concrete example of subjects choosing
over consumer items was developed in detail.
We find that neural activity, measured in isola-

tion, predicts subsequent choice behavior as has
been previously argued. However, we also find
that the magnitude of the difference in neural
activity is positively correlated with the degree
of stochasticity in choice (measured via the
number of preference switches in repeated tri-
als). These results establish that neural measure-
ments carry cardinal information relevant for
choice prediction.

However, we also find that measurement error
limits the effectiveness of the neural observables
far more than has been acknowledged in the liter-
ature. Econometric techniques available to the
NRUM framework mitigate some of the impact of
measurement error—yielding less-biased model
estimates—provided that the experiment consists
of repeated choice trials from the same choice
sets. To assess the predictive performance of these
measurements, we examined previously proposed
prediction rules for choice trials treated indepen-
dently, and propose new prediction rules appro-
priate for repeated choice trials from the same
choice set. When choice trials are treated indepen-
dently, the NRUM yields marginal improvements
in choice prediction, primarily owing to the cor-
rection for measurement error. However, when
repeated choice trials are treated jointly, the car-
dinality of the NRUM allows the model to better
capture the distribution of choice outcomes com-
pared with an ordinal model.

The measurement error correction we explore
in this article uses a convenient property of the
Levy et al. (2011) data set, namely that each
choice was repeated twice. This allows measure-
ment error to be modeled as a random effect that
holds constant over repeated choices. Apart from
the improvement in model estimates, this ap-
proach has the added benefit of providing identi-
fication of the standard deviation of the measure-
ment error. However, there are limitations to this
method. Because the measurement error is corre-
lated over trials, the random effect is misspecified
and the measurement error estimate will be biased
positively. For this reason, the estimate ̂e pro-
vided here should be considered an upper bound,
though we do confirm via simulation that a con-
siderable degree of measurement error is needed
to match features of the observed data. In princi-
ple, unbiased estimates should be feasible pro-
vided that the correct structure of the random
effect is specified. This would require devising an
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estimator that relaxes the independence assump-
tion used here.31

Even after the measurement error correction,
choice prediction performance barely matches
two standard aggregate observables, the price and
quality ratings of the items. Combining neural
measurements and standard observables further
improves choice prediction, suggesting that the
neural observables provide subject-specific infor-
mation. Of course, this improvement comes at a
high implementation cost for brain-scanning tech-
nology (roughly $50,000 for Levy and colleagues
to produce this data set), limiting the prevalence
and usefulness of current neural measurements.

Our approach to modeling choice prediction
from neural observables thus offers four contribu-
tions to the literature. It establishes that neural
measurements do carry cardinal information about
the relative values of alternatives. It establishes the
positive performance of neural measurements us-
ing fMRI technology and defines clearly the
benchmarking process that will be required for
future measurement techniques. It offers a general
framework for combined economic–neurobiologi-
cal modeling from which both richer, more restric-
tive specifications can be developed. And finally,
it lays out the basic welfare structure inherent in a
neurobiological decision model.

31 In addition, simulation-based techniques for an unbiased
estimate exist in the biostatistics literature (Carroll et al., 2006,
Chapter 5). Our simulation results (Figure 2) suggest �e is too
large by roughly a factor of 2 for them to be applicable but may
soon become practical as technology improves.
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Appendix

The Levy et al. (2011) Experiment

The laboratory experiment was divided into
three stages. The first two stages were per-
formed inside a magnetic resonance imaging
(MRI) scanner. In the first stage, subjects pas-
sively viewed the outcome of a series of small
lotteries over changes to their wealth. The pur-
pose of this stage was to identify the areas of the
brain that encoded the subject’s subjective val-
ues, �i,t. In the second stage, subjects passively
viewed 20 consumer items while intermittently
performing an incentivized task so as to main-
tain subject engagement. The purpose of this
stage was to repeatedly measure the subjective
values of these items. Immediately after the
second stage, subjects performed a third stage
outside of the scanner in which they made all
possible binary choices over this set of items in

an incentive compatible fashion. Before leaving
the subject also received a $25 show-up fee in
cash.

Localization of Subjective Value in the
Medial Prefrontal Cortex

The first stage of the experiment was de-
signed to identify an area in the brain of each
subject that encodes subjective value. For brain
measurements, we used functional MRI using
standard techniques (as in Caplin, Dean, Glim-
cher, & Rutledge, 2010; Levy et al., 2011).
These techniques indirectly measure brain ac-
tivity over a 2-s interval in each of about
250,000 (3 mm � 3 mm � 3 mm) cubes (vox-
els) tiling the human brain. The product of this
process is thus a time series, in 2-s increments,
of activation levels in each voxel.

(Appendix continues)
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The measure of activation is derived from the
paramagnetic properties of the hemoglobin
molecule and is known as the blood-oxygen-
ation-level-dependent signal. This measurement
has been demonstrated to be strictly monotonic
in the average of the neural activity within the
voxel, and most studies indicate that the blood-
oxygenation-level-dependent measure approxi-
mates a linear transformation of neural activity
(Kahn et al., 2011; Logothetis, Guggenberger,
Peled, & Pauls, 1999, Logothetis, Pauls, Au-
gath, Trinath, & Oeltermann, 2001).

A statistical challenge arises from the sheer
number of time series functional MRI generates
imposed by determining which voxels/time se-
ries to study (Vul, Harris, Piotr Winkielman, &
Pashler, 2009). This study restricted analysis to
regions of the brain known to encode subjective
value-like signals, the medial prefrontal cortex
(mPFC) and striatum.32 An initial experiment
aimed at independently “localizing” subjective
value encoding voxels within the mPFC and
striatum, with the intention of conducting the
analysis of the main experiment upon a time
series derived by averaging over these localized
voxels.

In this initial stage of the experiment, each
subject was endowed with $40. On ensuing
trials, a lottery with equal probability of gaining
or losing $2 was presented visually to the sub-
ject in the scanner. The outcome of the lottery
was then revealed to the subject and the result
was added to or deducted from the subject’s
wealth. In total, 128 trials of this kind were
presented.33 For each voxel, the difference in
average activity between winning and losing
was calculated. For each subject, voxels that
showed a statistically significant difference
were identified as our region of interest for
encoding subjective valuation (Figure 6).

Recording the Subjective Value of Items

Immediately following the first stage, sub-
jects completed a second stage in the scanner
intended to measure the subjective values of 20
consumer items. Subjects completed six 7-min
brain scans over the course of 45 min, each
consisting of 40 trials, for a total of 240 trials. In

each of these trials, subjects passively viewed
an image of one of 20 different items, including
four DVD movies, two books, four art posters,
three music CDs, two pieces of stationery, and
five monetary lotteries represented by pie
charts. Each lottery offered a 50% chance of
receiving a designated amount of money ($10,
$15, $20, $25, or $30) and a 50% chance of
receiving $0. All items were presented 12 times
in a random order to each subject. Subjects were
instructed that when they saw an item they
should think about how much it was worth to
them in a dollar amount.

To keep subjects alert, on 20 randomly se-
lected trials (one for each of the 20 items),
subjects were asked whether they preferred the
item they had just seen or a randomly selected
amount of money (ranging from $1 to $10).
Subjects were told that one of these question
trials would be randomly realized at the end and
they would receive their selection on that trial—
the item or the money. These 20 question trials
were excluded from all behavioral and neural
analysis. During the scanning stage, subjects
did not know they would subsequently be of-
fered an opportunity to choose between these
same items after the scanning process was com-
plete.

Choice Task

Following the second scanning stage, sub-
jects were asked to perform a choice task out-
side of the scanner. Subjects were presented
with a complete series of binary choices be-
tween the 20 items previously presented in the
scanner. Each possible binary comparison (190
choices) was presented twice (switching the
left–right location on each repetition), in ran-
dom order, for a total of 380 choices. The result
of one of these choices was randomly selected
for realization.

32 For reviews relating mPFC and striatal activity to
subjective value, see Bartra et al. (2013), Clithero and
Rangel (2013), and Levy and Glimcher (2012).

33 This task is a nonchoice version of the task previously
developed in Caplin et al. (2010).

(Appendix continues)
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The choices of subjects were largely consistent,
with 96 � 2% of triplets transitive and subjects
switching their selection in only 9 � 1% of choice
repetitions. Choices were also highly idiosyncratic
across subjects such that the individual prefer-
ences of a given subject could not be predicted
from preferences exhibited by other subjects
(mean correlation of ranking between pairs of
subjects, excluding lotteries: r � 0.1 � 0.3).34

Comparison With Standard Latent
Variable Modeling

The neural random utility model (NRUM) de-
composes the uncertainty present in the standard
random utility model into biophysically distinct
sources, yielding the observable variable v on
which to base choice prediction. This allows us to
investigate, as a benchmark for our measurement,
the potential benefit of using neural data to predict
choices compared with a data set of only standard
economic observables. In particular, we focus on
specification error in the standard approach owing
to the modeler’s inability to observe all the attri-
butes (of alternatives and decision makers) that
make up utility (Manski, 1977).

To cement ideas, suppose on a given trial the
econometrician only observes a partition,
Xi,t � �k, of the full vector of attributes, Zi,t � �l,
which make up subjective value (or utility) for
item i (i.e. k � l). In the standard formulation of
the random utility model, this partitioning matters
because the econometrician does not observe the
utility of item i, instead the latent variable ui,t must
be indirectly specified. The components of sub-
jective value that are observed, Xi,t, are related to
this latent variable as a linear combination, Xi,t�,
whereas the components of ui,t that are unob-
served are bundled into an error term εi,t.

Given our NRUM, we can decompose εi,t
into three sources. For the sake of this argu-
ment, we follow the standard approach and as-
sume that subjective value is related to the ar-
guments Z or X through the linear function
V(Xi,t; �) � Xi,t� � �i,t.

35 The difference be-
tween the full specification V(Zi,t; �) and the
partitioned specification V(Xi,t; �), which we
will refer to as specification error, is denoted as
�i,t. Together with the stochasticity in subjec-
tive value and the choice mechanism, this yields
a decision variable in which εi,t � �i,t � �i,t �

�i,t bundles together the three sources of uncer-
tainty in our NRUM as follows:


i,t � 
(Zi,t, �)


i,t � 
(Xi,t, �) � �i,t


i,t � �i,t � Xi,t� � 
i,t � �i,t � �i,t

ui,t � Xi,t� � 
i,t � �i,t � �i,t.

As before, we can derive choice probabilities after
imposing normality assumptions to arrive at the fa-
miliar textbook specification of the probit model,

P(yij,t � 1�Xij,t) � P�Xi,t� � ��ij,t � �
ji,t

� ��ji,t�
� P�Xij,t� � ��ij,t� (22)

���Xij,t�

��
�, (23)

where the variable ��ij,t aggregates all of the
differenced error terms and ��

2 � ��
2 �

�
���
2 .
An obvious implication is that the latent vari-

able model with non-zero specification error (23)
will have the worst predictive power relative to the
two neural specifications (11) and (13) because
��

2 � �
���
2 � ��

2 . The latent variable formu-
lation introduces error into the specification owing
to an inability of the modeler to fully explain sub-
jective value with observables in the data set (Man-
ski, 1977). Observing a neural measure of subjec-
tive value removes this source of error, provided
we can obtain a suitable neural measurement.

34 We also verified that the random amounts of money
used in the question trials in the scanner did not bias
subjects’ choices outside of the scanner.

35 In practice, this function must be nonlinear because the
neural activity that encodes v is bounded above and below.
In addition, there is evidence that V () takes the entire vector
X as its argument, yielding subjective values that depend on
the composition of the choice set (Louie, Grattan, & Glim-
cher, 2011; Webb, Glimcher, & Louie, 2016). Both of these
issues result in misspecification error if unaccounted for.
Although the first issue can be easily dealt with in a standard
RUM, the second requires careful attention (Webb et al.,
2016). Regardless, both of these issues disappear if v is
observed directly.
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