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Psychological therapies, such as CBT, are an important part of the treatment of a range

of psychiatric disorders such as depression and anxiety. There is a growing desire to

understand the mechanisms by which such therapies effect change so as to improve

treatment outcomes. Here we argue that adopting a computational framework may be

one such approach. Computational psychiatry aims to provide a theoretical framework

for moving between higher-level psychological states (like emotions, decisions and

beliefs) to neural circuits, bymodeling these constructs mathematically. Thesemodels are

explicit hypotheses that contain quantifiable variables and parameters derived from each

individual’s behavior. This approach has two advantages. Firstly, some of the variables

described by these models appears to reflect the neural activity of specific brain regions.

Secondly, the parameters estimated by these models may offer a unique description

of a patient’s symptoms which can be used to both tailor therapy and track its effect.

In doing so this approach may offer some additional granularity in understanding how

psychological therapies, such as CBT, are working. Although this field shows significant

promise, we also highlight several of the key hurdles that must first be overcome before

clinical translation of computational insights can be realized.

Keywords: psychological therapies, decision-making, computational psychiatry, computational neuroscience,

CBT (cognitive-behavioral therapy), reinforcement learning (RL), mechanisms, reward (healthcare)

INTRODUCTION

There is growing recognition that, to move forward, the field of psychological therapy needs to
return to its scientific roots and become more mechanism focused. A Lancet commission for
improving psychological therapies urged greater synergy between basic and clinical research (1).
In this paper, we argue that considering psychological therapies from a computational perspective
may be one such approach to achieve this aim.

The emerging field of computational psychiatry aims to provide a theoretical framework for
moving between higher-level psychological states (including emotions, decisions and beliefs) to
neural circuits, by modeling these constructs mathematically (2, 3). Here, we do not cover the
breath of research in computational psychiatry and direct interested readers to other recent
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reviews (3, 4). Instead, the focus of this piece is how
a computational framework may translate to psychological
therapies by allowing us to get closer to the generating
mechanisms of symptoms and distress (5, 6). For a consideration
of how these frameworks might provide insight into the
generating and maintaining processes targeted by psychological
therapies, the reader is referred to (5). In this article, we primarily
focus on the application of “reinforcement learning” models
(7) to understanding and evaluating cognitive behavior therapy
(CBT) specifically. There are a wide range of psychological
treatment modalities, such as psychodynamic therapy (8) and
humanistic (9) approaches. There are also many approaches
derived from or compatible with computational modeling,
including active inference (10) and perceptual control theory
(PCT) (11, 12) which make different predictions about the
relationship between internal states and behavior [for example in
PCT, the control of sensory input through behavior, see (11)]. It
is beyond the scope of this article to cover them all, and we focus
on reinforcement learning and CBT as examples, as two of the
most widespread frameworks. We do not necessarily advocate
for these two frameworks above others; rather, we use them as
salient examples of how computational theory can help us better
to understand how psychological therapy works. We also discuss
some of the challenges that currently limit the translation of
computational psychiatry into clinical practice.

FIGURE 1 | An example of a computational problem—learning which actions are the most and least rewarding. In typical tasks, participants choose between stimuli

which differ in terms of reward probabilities. Through trial and error participants learn to choose and to avoid the best and worst options, respectively. This type of

behavior is well-captured by simple computational models like the one described and variables from these models, such as the prediction error, correlated with brain

activity. For therapy, failure to learn from rewarding or punishing experiences may limit the capacity to change behavior.

What Is Computational Psychiatry?
A central goal of CBT is to support patients in moving toward
their goals, which will typically involve helping patients to adapt
their beliefs and behavior to their current environment (13).
Put in computational terms, such therapies, in effect, alter the
mapping between states the person is in, for example an anxiety-
provoking situation, like giving a presentation, and actions, such
as staying or escaping. In computational terms, this mapping
between states and actions is known as the policy (7). By helping
patients adapt their beliefs and behavior, psychological therapies
can be understood as helping patients adopt new policies. For
example, consider a musician with depression reporting that they
now get less pleasure (or reward) from a past-time that they used
to enjoy, such as playing the guitar, and so have stopped entirely.
Here, a possible psychological mechanism maintaining their
depression would be behavioral avoidance (14). That is, a lack of
positive reinforcement from their environment and/or negative
reinforcement of the avoidant behavior (e.g., not playing the
guitar serves to avoid experiencing negative emotions of feeling
upset and ashamedwhenever they don’t play the guitar perfectly).

Algorithmically, this prediction error, the difference between
reward and expectation, is used to update the “value” of that
action for the future. In this case, the value of playing the guitar
will reduce, so that in the future when trying to decide what
to do, it is much less likely that playing guitar will be chosen
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because the expected value has fallen (Figure 1). As such, the
patient’s policy has changed. Successful behavioral therapy would
seek to reverse this. Within computational models, this updating
is typically controlled by a parameter known as the learning rate.
Variability in the learning rate parameter reflects how sharply the
value of actions, such as choosing to play guitar, are changed by
recent prediction errors.

Can Computational Parameters Be Used to
Measure Change During Psychological
Therapy?
If CBT results in changes in policy, then computational
parameters such as the learning rate, should determine the rate of
this change and therefore, may be an early predictor of treatment
response. Indeed, if parameters control a process that generates
or maintains psychiatric symptoms, then changes to these
parameters could precede and mediate subsequent improvement
of those symptoms. An analog from pharmacotherapy is the
finding that the clinical benefit of antidepressant medication,
which is typically on the order of weeks (15), may actually be
preceded by a normalizing effect on the neural processing of
negative emotional information that is evident on the order of
hours (16). As such, change in computational model parameters
may also serve as useful secondary outcomes for evaluating the
effectiveness of psychological therapy. For example, in patients
with anxiety who have measurable differences in learning rates
as compared to controls (17), change in these parameters may
suggest successful psychological intervention even if symptoms
have not yet reached remission. This is analogous to the use of
biomarkers in clinical trials being used as secondary outcomes—
for example, changes in amyloid-beta measures in clinical trials
for Alzheimer dementia may suggest possible treatment efficacy
even if no change is seen in cognitive scores (18). It has previously
been proposed that outcomes in psychological therapy could be
formally modeled, using dynamic systems theory, for example (19,
20). As compared to these proposals, computational modeling
parameters from reinforcement learning models would serves
to model the underlying computational process driving change
rather than the complex dynamics of psychotherapy. This is,
of course, dependent on identifying computational differences
that track the relevant state or trait features that psychological
therapy is aiming to target. From pharmacology studies it can
be shown than administering drugs that act on dopamine and
serotonin neurotransmitter systems, for example, can alter fitted
computational parameters in behavioral tasks (21, 22). The same
may be true for efficacious psychological therapies.

The computational approach is also appealing because
variables derived from algorithmic models have been shown
to be tracked by the brain (23). This is valuable because
neurobiological measures provide objective measures of the
processes that generate behavior which are often not amenable
to accurate self-report (1). Moreover, there is amassing empirical
evidence that psychological therapy leads to reorganization at the
neural level. For example, longitudinal functional MRI studies of
CBT identify a strengthening of connections between prefrontal
cortex and limbic regions [consistent with contextualizing and

regulating emotion and potential threat (24, 25), and that
the extent of these CBT-led changes may predict the degree
of remission experienced several years post-therapy (26)]. In
tasks that involve learning and the updating of beliefs and
behavior, reinforcement learning algorithms not only account
for behavior but also predict regional brain activity. Numerous
fMRI studies have reported that the prediction error signal,
described above, correlates with the activity in the ventral
striatum and frontal cortices in fMRI studies of instrumental
learning (23) (Figure 1), and there is recent evidence that
these signals predict response to CBT (27). The expected value
of a chosen option has also been shown to correlate with
activity in the medial prefrontal cortex (28). Outside of learning
tasks, other models which consider costs show that effort and
net-value may be coded in different brain regions such as
the cingulate cortex (29). If these computational parameters
and variables from models are associated with psychological
recovery, this approach may offer deeper localization of the
therapy effects. Furthermore, recent movements in CBT have
focused attention away from disorder-specific interventions to
underlying psychological processes appearing across multiple
disorders (30, 31). This newer approach is arguably a better fit
with computational modeling of brain and behavior as the role
of computational parameters in determining decision-making or
behavior is not limited by diagnosis. Largely in this article we have
focused on parameters that change with clinical state. However,
variance in these parameters when patients are well may be a
readout of underlying processes which put patients at risk of
mental health difficulties.

Can Computational Parameters Inform
Formulation and Tailor Delivery of
Psychological Therapy?
Computational models make several testable predictions relevant
to understanding the variance in the efficacy of psychological
therapies. Firstly, change techniques will be less effective for
those patients who struggle to update the value of actions based
on new evidence (i.e., those with lower learning rates for that
target belief or behavior). Secondly, more targeted approaches
that increase learning rates for therapy-guided action-outcome
pairs may increase the effectiveness of interventions (by fostering
new learning and updating policies). A key factor determining
the success of cognitive-behavioral techniques such as behavioral
experiments, in which patients test out what happens when in
a feared situation, is whether their prediction about what will
happen has been clearly operationalized (32). In the current
framework, this step ensures that the prediction error generated
if the outcome differs from what was feared is then optimally
attended to and utilized to update future expectations about
similar situations. Indeed, attention to prediction errors has
been shown to be a key process for efficient learning and
belief updating (33). Therefore, a third prediction would be that
adding preparatory work that promotes attention to prediction
errors will increase the effectiveness of the separate learning-
based intervention. Behavioral interventions for depression,
for example, assume that low mood is maintained by a
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FIGURE 2 | An example of a patient journey through psychological therapy that incorporates computational assessments. Alongside psychological formulation,

task-based assessments output individual parameters for a range of computational processes–such as reward learning or effort discounting. From this analysis, a

tailored computational profile could be used to tailor components of therapy (for example attention and learning during behavioral activation versus cognitive

restructuring of beliefs around effort). These computational parameters provide objective markers for evaluating change and, by virtue of being closer to the underlying

mechanisms that generate or maintain symptoms, may provide an earlier readout of change that precedes symptom improvement. Tasks exist in adapted forms for

use online or on smart devices that may also improve patient access and engagement.

reduction in rewarding experiences in a person’s life and
aim to bring the client back into contact with meaningful
rewarding experiences. An important component involves the
client making formal predictions about how enjoyable, or
unenjoyable, an activity will be and re-rating that with the actual
level of enjoyment experienced (14). This process increases the
chances that a prediction error is computed and utilized to
update beliefs.

Computational work also suggests that psychological
therapies could be tailored to individual patients. Recent work
has shown that prediction errors come in many shapes and sizes.
An action could also vary not only in the amount of reward
it yields but in the estimated effort, or other costs, needed to
obtain reward. There is evidence that estimations about any of
these aspects may go awry when someone is depressed (34).
Behavioral activation often involves the client quantifying how
rewarding an activity will be (reward predictions), but recent
work shows that the brain also computes effort prediction errors
used to learn the costs associated with different states (35). These
effort prediction errors could also be harnessed for the purpose
of learning and updating as described above (Figure 2). As with
reward prediction errors, learning rate may also vary between
patients. Patients could therefore be stratified therefore not
only on reward-based parameters but differences in cost-based
parameters like effort sensitivity and effort learning rates. These
parameters could be used to tailor the cognitive-behavioral
change techniques that are deployed.

RECOMMENDATIONS AND FUTURE
DIRECTIONS

Although this approach holds significant promise, we lack
concrete examples of computational psychological therapy.
There is promising work for example in anxiety, implicating the
failure to adaptively modulate learning rate (36) that nonetheless
currently falls short of clinical translation. The field also faces
a number of hurdles which limit its application into clinical
practice—these include reproducibility, generalizability, and
scalability (Box 1). Computational parameters are estimated by
fitting a model to behavior generated in bespoke behavioral tasks.
In its nascent state, much computational research is currently
focused on expanding current knowledge often with novel tasks
and new models of behavior. For computational modeling to
be useful in clinical practice, equal focus should be placed on
pragmatic concerns such as generating reproducible findings
and increasing the test-retest reliability of task performance and
parameter estimation. For computational parameters to act as
secondary outcomes in therapeutic trials they will be required
to show stability over time in relevant control groups. Test-
retest reliability of computational parameters appears currently
modest (38), reducing the power of clinical trials where they
could offer greater granularity to detect changes in cognitions and
behavior that are relevant to treatment efficacy. Furthermore, the
use of bespoke tasks in individual studies limits interpretability
and evidence synthesis (including meta-analysis across studies).
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BOX 1 | Road blocks for integrating computational approaches to

understanding psychological therapy

1. Reliability. Whilst computational model parameters show promise, their

test-retest reliability for specific tasks often remains to be established.

In order to reap the benefits of more objective and direct measures of

neuro-computational processes, extensive validation of the stability of

tasks and model parameters over time is needed. Only computational

parameters that show good test-retest reliability can they be used to

track clinical state and evaluate the effectiveness of interventions.

2. Generalizability. Even once stable task measures are derived, a

major gap to be filled is to confirm that they are predictive of real-life

phenomena. For example, model parameters purporting to measure

mood instability within an experimental setting should predict real-life

mood fluctuations experienced by patients (for example via experience

sampling). A second requirement is that if change in these task-based

parameters is effected by some intervention, it should translate to

benefits in real-life symptoms and functioning. This is analogous to the

challenges faced by approaches involving cognitive training (37).

3. Scalable and easy to implement. Unlike other biomarker approaches

including those which require neuroimaging technology, computational

approaches provide inexpensive and practical measures that are

collected behaviorally but grounded in neurobiology. They lend

themselves to convenient online and smartphone-based data collection.

This makes them more practical and far less expensive than fMRI

for the purpose of patient stratification, treatment selection and other

clinical decision-making. They also lend themselves to longitudinal

“self-assessment” for the purpose of symptom monitoring and/or

treatment evaluation.

Avoiding this confusion is especially important when seeking
to synthesize effect of a treatment on an outcome, such
as the effect of CBT for anxiety on the learning rate in
volatile environments.

Second, although parameters from models govern behavior,
the degree to which they predict behavior outside of carefully
controlled experimental conditions remains to be robustly
established. Ideally, computational model parameters should
capture real-life phenomena in ecological settings, and changes
seen in controlled settings must generalize between the two.
There does not appear to be good support for this at present
(39). Others have argued the need for ecologically valid tasks and
models (40) and this argument becomes stronger when wanting
to demonstrate functional improvement following psychological
therapy. Returning to the example of the depressed patient who
no longer enjoys playing the guitar, computational parameters
from a reward task should ideally predict not only abstract task
performance but the patient’s ability to return to their hobbies
as they find them more enjoyable. Third, achieving this may
also benefit from data collection in real-life settings, since they
are closer to the environment which neural circuits should
be tuned to and where symptoms arise. As alluded to above,
unlike other biomarker approaches which require neuroimaging
technology or biofluids, computational approaches can provide
inexpensive and practical measures that are collected behaviorally
but grounded in the underlying neurobiology. They lend

themselves to convenient online and smartphone-based data
collection. This makes themmore practical and far less expensive
than fMRI for the purpose of patient stratification, treatment
selection and other clinical decision-making. They also lend
themselves to longitudinal “self-assessment” for the purpose
of symptom monitoring and treatment evaluation. There are
already notable examples of the scalability of this approach
for objective smartphone-based measurements of mood and
decision-making, including in the clinical population (2, 41, 42).
This approach also allows task-derived parameters to be validated
alongside the real-life phenomena they supposedly capture, for
example by tracking mood and associated measures of activity
such as step count (43).

In summary, we argue that the inclusion of the computational
characterization of behavior for patients undergoing
psychological therapies offers a number of unique advances.
Firstly, it is a principled theoretical framework to bridge
psychological constructs with neural circuitry and function
via mathematical models of cognitive processes. These models
are explicit testable hypotheses with quantifiable parameters
which govern individual differences in learning and behavior.
As such, these models can be used to assess the impact of
psychological processes on deeper processes such as learning.
Finally, parameters from computational models may act as
secondary outcome measures predicting psychological recovery
that may precede behavioral or changes in symptom levels
(Figure 2). There has been much recent excitement about the
possibility of neuroimaging biomarkers for patient stratification
(44). It remains to be seen whether computational biomarkers
will achieve the same level of performance as neuroimaging
biomarkers, but given that the costs can be more than a 100-fold
lower, computational approaches hold considerable promise
to improve psychological therapies. There remain a number
of challenges. In order to be beneficial to treatment trials,
computational tasks should be standardized and their parameter
estimates should be stable in the absence of intervention
and predictive of real-world behavior. If there is sufficient
appetite from practitioners and patients, to adopt computational
frameworks, we are optimistic that these limitations will be
addressed and adopting a computational approach to the study
of psychological therapies will allow us to peer under the hood
and to improve our therapies for patients.
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