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Abstract Humans refer to their mood state regularly in day-to-day as well as clinical interactions.

Theoretical accounts suggest that when reporting on our mood we integrate over the history of

our experiences; yet, the temporal structure of this integration remains unexamined. Here, we use

a computational approach to quantitatively answer this question and show that early events exert a

stronger influence on reported mood (a primacy weighting) compared to recent events. We show

that a Primacy model accounts better for mood reports compared to a range of alternative

temporal representations across random, consistent, or dynamic reward environments, different

age groups, and in both healthy and depressed participants. Moreover, we find evidence for neural

encoding of the Primacy, but not the Recency, model in frontal brain regions related to mood

regulation. These findings hold implications for the timing of events in experimental or clinical

settings and suggest new directions for individualized mood interventions.

Introduction
Self-reports of momentary mood carry broad implications, yet their underpinnings are poorly under-

stood. We report on our momentary mood to convey to others an impression of our well-being in

everyday life (Clark and Watson, 1988; Forgas et al., 1984); clinically, self-reports of momentary

mood form a cornerstone of psychiatric interviewing (Daviss et al., 2006; Wood et al., 1995); in

research, momentary mood is widely used to quantify human emotional responses, such as in eco-

logical momentary assessment (EMA) (Kahneman et al., 2004; Larson et al., 1980; Taquet et al.,

2020). Moreover, theoretical accounts suggest that when we report on our mood we integrate over

the history of our experiences with the environment (Eldar et al., 2016; Katsimerou et al., 2014;

Nettle and Bateson, 2012; Rutledge et al., 2014; Vinckier et al., 2018). In this paper, we address

the fundamental question of the time pattern of this integration—what is the timing of events, for

example, early versus recent—that matter the most for how we report our mood.

The standard account is that momentary mood reporting is predominantly affected by recent

reward prediction errors (Rutledge et al., 2014) (RPEs, or how much better or worse outcomes

were relative to what was expected). Accordingly, the more surprising an event is (operationalized

as a positive or negative RPE) and the more recent it is, the more it will affect momentary mood. In

modeling terms, the standard account posits that humans apply a recency weighting such that their
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most recent experiences override those in the more distant past (e.g., experiences that happened

early in the course of a conversation or a game would matter far less). This computational account

has several real-life implications. In terms of measurement of momentary mood, a momentary happi-

ness rating would be a good proxy for one’s most recent experiences. In terms of clinical interactions

(such as during an interview or a treatment session), a person’s momentary mood could be lifted by

the addition of a positive event.

This standard temporal account is widely applied in models of mood (Eldar et al., 2016;

Katsimerou et al., 2014; Rutledge et al., 2014; Vinckier et al., 2018), yet is largely unexamined

and has not been compared to plausible alternatives. Indeed, at the opposite end of the standard

recency model stands a primacy account of momentary mood. According to a primacy model, expe-

riences that occur early in a conversation, a game, or interaction prevail over more recent ones. The

intuition for such a model comes from idiomatic expressions such as starting off on the right foot or

empirical evidence, which shows that the first instances of an interaction can be highly informative

(Ambady and Rosenthal, 1992; Houser and Furler, 2007). Computationally speaking, early events

would be weighted more heavily than recent events, which has several real-world implications. From

a measurement perspective, the time scales of momentary mood reporting and of experience would

overlap less than in the recency model—the current mood rating would be less of a reflection of the

current environment. Moreover, the emphasis on the start of interactions such as interviews or treat-

ment sessions would be much greater.

A computational approach can help us answer this important question as it allows us to make

explicit in model terms how humans integrate over their experiences in order to arrive at a self-

report of their moods (Huys et al., 2016). For this purpose, we developed a novel Primacy model

that we pitted against the standard Recency model. We then also examine a host of other plausible

models as suggested in disparate literatures about valuation timing (Kahneman and Tversky, 2000;

Olsson et al., 2017).

We examine these different temporal integration models across a range of conditions in order to

establish their generalizability.

First, we examine the Primacy and the Recency models in their generalizability across reward envi-

ronments. To do this, we exploited the flexibility of a standard probabilistic task (Rutledge et al.,

2014) and adapted it to create different task conditions. (1) A random environment, where there

was no consistent trend over time in the direction or value of surprises (RPEs); (2) a structured envi-

ronment, where events in the form of RPEs were organized in positive and negative blocks; and (3) a

structured-adaptive environment, where the intensity of RPEs was enhanced in real time to maximize

the influence of task events on mood over time and across individuals. We could not be certain that

the fixed stimuli of the structured task would be sufficient to drive large changes in mood in each

participant, which might influence the temporal integration of events. Therefore, we developed the

adaptive task to compensate for individual and temporal differences in mood response, this by deliv-

ering personalized stimuli that increase the likelihood of observing a large variation in mood from

each participant (implemented by adding a closed-loop controller into the standard probabilistic

task).

Second, we examine the generalizability of the different temporal integration models across age

groups given that previous studies have shown important differences in reward processing particu-

larly between adolescent and adult groups (Braams et al., 2015; Casey et al., 2010; Heller and

Casey, 2016; Kayser et al., 2015; Somerville et al., 2010; Walker et al., 2017).

Third, we also examine the generalizability of these models across healthy volunteers and

depressed participants, given the wealth of evidence that depression is associated with aberrations

in reward processing (Keren et al., 2018; Ng et al., 2019; Stringaris et al., 2015; Whitmer et al.,

2012), which might be also affecting the temporal integration of experiences.

We then examine the generalizability of the performance of the two models across simulated

data in a model recovery analysis that protects from model selection biases (Hastie et al., 2009;

Wilson and Collins, 2019).

Additionally, we examine the generalizability of the Primacy model performance in comparison to

other variants of the Recency model.

Finally, we compare the neural correlates of key terms of these competing models using whole-

brain fMRI. Previous work has shown that the reporting of mood and evoking emotional responses

leads to activations in a network of brain areas encompassing the fronto-limbic circuit (Etkin et al.,
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2015; Etkin et al., 2011; Rutledge et al., 2014). Concordance between computational model

parameters and neural activity levels provides evidence that the mechanisms described by the model

correspond to the neural processes underlying that behavior. For this reason, we test the correlation

of Primacy and Recency model parameters with neural activity measured as blood oxygen-level-

dependent (BOLD) signal during fMRI and then directly contrast between the relations of the two

models.

Results

The Primacy and Recency models of mood
As a first step, we compared the Primacy model versus the Recency model of mood. These were

designed to correspond to the general experimental setup that is presented in Figure 1A and has

been used extensively before to answer questions about mood (Rutledge et al., 2017;

Rutledge et al., 2014). In brief, participants first chose whether to receive a certain amount or to

gamble between two values. These values allowed each trial to present to the participant an expec-

tation and an RPE value, where the latter is considered as the difference between the outcome and

the expectation values. Subjects were also asked to rate their momentary mood every 2–3 trials by

moving a cursor along a scale between unhappy and happy mood. Such mood ratings have been

shown before to correspond to the general state of well-being of participants (Rutledge et al.,

2017); we validated this in our dataset with a significant correlation between baseline mood ratings

and participant’s depressive symptom scores (with Mood and Feelings Questionnaire [MFQ] mea-

sure in adolescent sample: CC = �0.62, p = 2.62e-8, CI = [�0.75,–0.44]; with Center for Epidemio-

logic Studies Depression [CESD] measure in adult sample: CC = �0.69, p = 7.12e-13, CI = [�0.79,–

0.56]) and in strong concordance with the gold standard psychiatric interview (KSADS) in distinguish-

ing between patients with depression and healthy volunteers (where the mean initial mood of

healthy was also significantly higher than of depressed, t = �3.36, df = 69, p = 0.0012, Cohen’s d

effect size = 0.97).

The two principal models, Recency and Primacy, are described in Figure 1B. Both models con-

sider a cumulative and discounted impact of the expectation term on mood, as shown in Figure 1B,

Equation 1 (Equations 6–8 in Materials and methods provide the complete formulation of these

models). The Recency model represents the standard models applied in computational accounts of

mood in such setups. In this recency model, expectation is defined as the average between the two

gambling values in the current trial (Figure 1B, Equation 2). By contrast, the Primacy model is our

hypothesized account of mood in such setups. In this model, expectation is defined as a weighted

average of all previous outcomes (Figure 1B, Equation 3). The critical difference between the two

models is illustrated below by presenting the different theoretical scaling curves for the influence

that events have on mood across the task. As can be appreciated, the Recency model places an

emphasis on the most recent trials. By contrast, the Primacy model emphasizes the early ones. The

stronger weight of earlier outcomes in the Primacy model emerges from two separate aspects of the

model: first, that one’s expectation for the next outcome is based on the average of all previously

received outcomes and, moreover, that mood is determined by the sum of all such past expectations

(see Figure 1—figure supplement 1 for a graphical illustration of these two aspects). The Primacy

model, therefore, is unique from the prior Recency model because it defines expectation on the

basis of the full history of events. We should note though, since the RPEs are recency weighted and

are calculated based on the difference of the (primacy weighted) expectation and actual outcome,

that recency-weighted outcomes do still influence mood in the Primacy model.

Primacy versus variants of the Recency model
Next, we tested the Primacy model performance against several alternative variants of the Recency

model.

First, we addressed the learning component implemented in the Primacy model by creating a

Recency model with learning from previous trials (termed the ‘Recency with dynamic win probability

model’). This model considered the actual individual winning probability instead of a fixed win prob-

ability of 50% in the expectation term (using a trial-level individual winning probability derived from

the percentage of previous win-trials).
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Figure 1. The Primacy versus Recency mood models. (A) Participants played a probabilistic task where they experienced different reward prediction

error values, while reporting subjective mood every 2-3 gambling trials. In each trial, participants chose whether to gamble between two monetary

values or to receive a certain amount (Gamble decision). During Expectation, the chosen option remained on the screen, followed by the presentation

of the Outcome value. (B)

Mood / bE

X

t

j¼1

gt�jEj (1)

presents the expectation term of the mood models, where bE is the influence of expectation values on subjective mood reports. The expectation

term of the Recency mood model as developed by Rutledge et al., 2014 is presented below

Et ¼
Hight þLowt

2
(2)

where it consists of the trial’s high and low gamble values. In the alternative Primacy model, as presented in

Figure 1 continued on next page
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Specifically, the win probability was formulated as follows:

pðtÞ ¼

Pt
t¼1

I Aðt� 1Þ ¼HðtÞð Þþ 5
Pt

t¼1
Gðt� 1Þþ 10

(4)

where the sum in the numerator counts the previous trials on which the outcome was the higher

value H (I is a binary vector of this condition with 1 for outcome H and 0 for the lower outcome L)

and the sum in the denominator counts the previous trials on which the participant chose to gamble

(G is a binary vector of this condition with 1 for the choice to gamble and 0 for the choice of the cer-

tain value). The additional bias of 5 in the numerator and 10 in the denominator implement Bayesian

shrinkage corresponding to 10 prior observations with an average success of 0.5. The expectation

term was modified accordingly:

Et ¼ pðtÞHðtÞþ ð1� pðtÞÞLðtÞð Þ (5)

We then addressed the elimination of the Certain term in the Primacy model by testing it against

a ‘Recency without the Certain outcome’ model.

Additionally, we addressed the unique feature of the Primacy model where individuals use experi-

enced outcomes to generate their expectations. We therefore compared the Primacy model to a

Recency model where the expectation term is based on the previous outcome rather than current tri-

al’s gamble values (the ‘Recency with outcome as expectation model’).

Next, we compared the Primacy model to a Recency model that merges the dynamic win proba-

bility and the elimination of the Certain term modifications, which is the most similar Recency model

to the Primacy model (termed the ‘Recency with both dynamic win and no Certain model’).

See Supplementary file 2 for the formulation of these alternative Recency models.

Primacy versus Recency models comparison criteria
We started from using two main criteria to compare between the models. First, a training error, the

mean squared error (MSE) of fitting the model to participant’s mood ratings. Second, a streaming

prediction error, a within-subject prediction of each mood rating using the preceding mood ratings

(with first 10 mood ratings being discarded as we found that the streaming prediction error criteria

were unstable in the first trials due to fewer available data points). A model performed better if it

had significantly smaller error between predicted and rated mood values in these criteria, as tested

across participants with a one-sided Wilcoxon signed-rank test, with p<0.05 (tests the null hypothesis

that two related paired samples come from the same distribution). We chose a one-sided null

because the conservative null would be that the new approach is equal to or worse than the existing

approach. Moreover, we used a leave-out sample validation and independent confirmatory datasets

in all model comparisons.

We then performed a model recovery assessment to validate the model selection criteria by

which we compare the performance of the Primacy and Recency models. We first generated simu-

lated datasets using each of the models and then fit the models and tested whether we could cor-

rectly identify the model that generated the data. According to both the training error and the

streaming prediction criteria, it was possible to recover the true model from the simulated data (the

Figure 1 continued

Et ¼
1

t� 1

X

t�1

i¼1

Ai (3)

the expectation term is replaced by the average of all previous outcomes (Ai). Moreover, as can be seen in Equations 6–8 in Materials and

methods, the Primacy model has overall fewer parameters compared to the Recency model. The theoretical scaling curves for the influence of previous

events on mood due to expected outcomes are presented for each model respectively below (see Figure 1—figure supplement 1 for additional

illustrations).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The Primacy effect of outcomes on mood.
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Recency model performed better on data simulated with the Recency model, and vice versa; see

Supplementary file 1). We then preferred to use the streaming prediction error across all compari-

sons as it is a more valid criterion due to the training error favoring overfitting (Hastie et al., 2009).

Primacy versus Recency models across different reward environments
Here, we compare the models and assess their validity across differently structured reward

environments.

Random environment
In order to generate a random reward environment, we used the standard probabilistic task

(Rutledge et al., 2014) as described above, where the RPE values were drawn randomly from a pre-

defined range of values (Figure 2A). As shown in Figure 2B (left panel), this causes mood fluctua-

tions in keeping with previous results (presents the mean across n = 60 participants, with a

significant effect of linear time, but not squared time, on mood in a linear mixed-effects model: btime

= -0.31, SE = 0.11, p = 0.006; btime2 ¼ 0.0009, SE = 0.002, p>0.05, and mood change effect size

[mean ± SD] = -0.93 ± 1.70).

Comparing the Primacy versus the different Recency models, we found that the Primacy model

outperformed each of the Recency models on the streaming-prediction criterion (see Figure 3 and

Table 1 for model performance comparison and Figure 3—figure supplement 1 for the distribu-

tions of the fitting coefficients of each of the tested models in this environment).
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Figure 2. Different experimental reward environments. (A) Reward prediction error (RPE) values received during each task version, averaged across all

participants (shaded areas represent SEM). (B) The influence of RPE values on mood reports along the task, averaged across all participants (shaded

areas are SEM). See Materials and methods for a link to the online repository from where the source data of this figure can be downloaded.
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Structured environment
In order to generate an environment that has some structure (consistently positive or negative

events), we modified the probabilistic task as shown in Figure 2A (middle panel): RPE values were

divided into three blocks, one of positive RPEs (+5), the second of negative RPEs (–5), and a third

block of positive RPEs again (+5). We found that the experimental setup leads to substantial fluctua-

tions in mood as can be seen in the middle panel of Figure 2B (presents the mean across n = 89 par-

ticipants, with a significant effect of time, both linear and squared, on mood in a linear mixed-effects

model: btime = -0.02, SE = 0.006, p<0.0001; btime2 = 0.0004, SE = 0.0001, p = 0.009, and an effect

size per block of [mean ± SD]: 0.56 ± 1.90, –1.42 ± –1.42, –0.55 ± –0.55, for the first, second, and

third blocks, respectively).

Comparing the Primacy versus the different Recency models, we found that the Primacy model

outperformed each of the Recency models on the streaming prediction criterion (see Figure 3 and

Table 1 for model performance comparison and Figure 3—figure supplement 1 for the distribu-

tions of the fitting coefficients of each of the tested models in this environment).

Figure 3. The better performance of the Primacy model. (A) Model comparison between the Primacy and the Recency models, using the streaming

prediction criterion, where the model is predicting each mood rating using the preceding ratings. On the left, the trial-level errors in predicting mood

with the Recency and the Primacy models are shown for all participants, during the structure-adaptive task (bold line depicts average across all

participants). This error is calculated by predicting the t-th mood rating using all preceding (1 to t-1) mood ratings, and therefore fitting iterations start

only as of the fourth mood rating (~15 gambling trials), which ensures that models have sufficient data to fit all parameters. The right panel presents the

median of mean squared errors (MSEs) of the Primacy model relative to the Recency model in this criterion across all datasets (edges indicate 25th and

75th percentiles, and error bars show the most extreme data point not considered an outlier). (B) Model comparison between the Primacy and three

variants of the Recency model, which also shows lower MSEs for the Primacy model. Values are median MSEs of the Primacy model relative to each of

the alternative models (i.e., Recency with dynamic probability model marked with circles, Recency without the Certain term model marked with squares,

and the Recency with outcomes as expectation model marked by crosses), and error bars are standard deviation across participants. The values used to

derive these plots are available in Table 1, fit coefficients are presented in Figure 3—figure supplement 2, and a link for downloading all the

modeling scripts can be found in Materials and methods.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distributions of the estimated coefficients for the parameters of the Primacy and the different Recency models.

Figure supplement 2. Expanding the Primacy model.

Figure supplement 3. Mood ratings and the respective trial-wise model parameters.
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Structured-adaptive environment
Since there can be substantial individual differences in response to events in the environment, we

developed a third, adaptive task that tracks individual performance and modifies the environment

accordingly. In this paradigm, RPE values were not predefined but modified in real time and in an

individualized manner by a proportional-integral (PI) controller (Levine, 2011) to enhance their

potential positive or negative influence on mood over time (see rightmost panel of Figure 2A for

the average RPE values across all n = 80 participants). This task also consisted of three blocks of RPE

values, pushing mood towards the highest mood value in the first block, the lowest mood in the sec-

ond, and the highest mood again in the third block. We found that this experimental setup leads to

the largest changes in mood as can be seen in the rightmost panel of Figure 2B (a significant effect

of time, both linear and squared, on mood in a linear mixed-effects model: btime = -0.04, SE = 0.004,

Table 1. Performance of the Primacy model versus alternative Recency models in three different reward environments (in adults) and

in a lab-based sample comprising adolescent participants, of which 40% were diagnosed as clinically depressed (using the

structured-adaptive task).

Statistical comparison is of the streaming prediction errors. (MSE: mean squared error; IQR: interquartile range).

Model MSE median IQR z-Value p-Value

Reward environment Random task Primacy 0.0165 0.0099 - -

Recency 0.0171 0.0091 1.8480 0.0323

Recency with dynamic win probability 0.0170 0.0078 2.7440 0.0030

Recency without a Certain term 0.0176 0.0099 1.9973 0.0229

Recency with outcome as expectation 0.0187 0.0114 3.0053 0.0013

Recency with both dynamic win and no Certain 0.0171 0.0079 2.7440 0.0030

Structured task Primacy 0.0088 0.0036 - -

Recency 0.0097 0.0069 1.6613 0.0483

Recency with dynamic win probability 0.0090 0.0043 1.8853 0.0297

Recency without a Certain term 0.0109 0.0091 3.0053 0.0013

Recency with outcome as expectation 0.0141 0.0044 3.8266 0.0001

Recency with both dynamic win and no Certain 0.0090 0.0044 1.8853 0.0290

Structured adaptive Primacy 0.0137 0.0041 - -

Recency 0.0160 0.0040 3.4533 0.0003

Recency with dynamic win probability 0.0171 0.0040 3.7146 0.0001

Recency without a Certain term 0.0189 0.0060 3.5279 0.0002

Recency with outcome as expectation 0.0179 0.0063 3.6773 0.0001

Recency with both dynamic win and no Certain 0.0172 0.0040 3.6770 0.0001

Age Adolescents lab-based Primacy 0.0066 0.0021 - -

Recency 0.0077 0.0028 3.4533 0.0003

Recency with dynamic win probability 0.0079 0.0026 2.8559 0.0021

Recency without a Certain term 0.0094 0.0029 3.9013 0.0000

Recency with outcome as expectation 0.0093 0.0038 3.6773 0.0001

Recency with both dynamic win and no Certain 0.0079 0.0027 2.9306 0.0017

Diagnosis Depressed adolescents Primacy 0.0043 0.0069 - -

Recency 0.0072 0.0053 3.2666 0.0005

Recency with dynamic win probability 0.0075 0.0042 3.3039 0.0004

Recency without a Certain term 0.0074 0.0042 3.3786 0.0003

Recency with outcome as expectation 0.0089 0.0043 3.9013 0.0000

Recency with both dynamic win and no Certain 0.0086 0.0069 3.4159 0.0003
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p<0.0001; btime2 = 0.001, SE = 0.0001, p<0.0001, and an effect size per block of [mean ± SD]: 0.92 ±

1.60, –1.75 ± 1.10, 1.45 ± 1.70, for the first, second, and third blocks, respectively).

Comparing the Primacy versus the different Recency models, we found that the Primacy model

outperformed each of the Recency models on the streaming prediction criterion (see Figure 3 and

Table 1 for model performance comparison and Figure 3—figure supplement 1 for the distribu-

tions of the fitting coefficients of each of the tested models in this environment).

In what follows, we tested the performance of the Primacy model versus the Recency models,

also across different age groups (including different experimental conditions), and across depressed

participants.

Primacy versus Recency models across different age groups
We found no differences in the strength of the mood changes by age group (no significant group

effect on mood in a linear mixed-effects model: F(152,1) = 2.35, p = 0.12, between an adult sample

[n = 80] with mean age ± SD = 37.76 ± 11.23, versus an adolescent sample [n = 72] with mean age

of 15.49 ± 1.48). The collection of these two datasets differed in age but also in experimental condi-

tions as the adult sample was collected online (see Materials and methods for details and the pre-

registered analysis link), while the adolescent sample was a lab-based collection in an fMRI scanner.

We found that the Primacy model outperformed the different Recency models in both the online

adult and the lab-based adolescent samples (see Figure 3 and Table 1 for model performance com-

parison and Figure 3—figure supplement 1 for the distributions of the fitting coefficients in each

age group).

Primacy versus Recency models across different diagnostic groups
We found no differences in the strength of the mood changes between the healthy and depressed

adolescent participants (when controlling for the difference in baseline mood, there was no signifi-

cant group effect on mood in a linear mixed-effects model: F(70,1) = 0.77, p = 0.38; between

healthy participants [n = 29] with mean ± SD depression score [MFQ] = 1.84 ± 2.49, versus partici-

pants diagnosed with major depression disorder [n = 43 with mean depression score of 8.31 ± 6.27;

12 or higher being the cutoff for indicating depression]).

Comparing the Primacy model versus the different Recency models in the depressed adolescent

sample, we found that the Primacy model outperformed each of the Recency models (see Figure 3

and Table 1 for model performance comparison). Moreover, we confirmed the superior performance

of the Primacy model result also in adult participants with high risk for depression (n = 28 partici-

pants with CESD scores above 16, being the cutoff for high risk for depression, showed significantly

lower MSEs for the Primacy against the Recency model in a Wilcoxon test with p<0.001).

For completeness, we also tested the Primacy model against models with other weighting of past

events. Figure 3—figure supplement 2 presents a model in which we added to the expectation

term a decay parameter and a parameter for how many previous outcomes are included, resulting in

various possible scaling curves for the influence of previous events (Equations S1 and S2). Comparing

five such alternative models showed that the Primacy model outperformed these models too (signifi-

cantly lower streaming prediction errors for the Primacy model in a Wilcoxon test with p<0.001).

See also Figure 3—figure supplement 3 for a demonstration of the change over time in task val-

ues and the Primacy versus the Recency model parameters, shown both for a single participant and

on average across the group.

Primacy versus Recency models in relation to brain responses
Finally, we compared the Primacy and the Recency models on the basis of their relationship to brain

activity measured using fMRI. To this end, participants were scanned whilst completing the struc-

tured-adaptive version of the task. We correlated BOLD signal with the participant-level weights of

the parameters of the Primacy and two of the Recency models (the original Recency model and the

Recency model that is most similar to the Primacy model, i.e., the one with both dynamic win proba-

bility and no Certain term). We found that neural activity preceding the mood rating phase

(Figure 4A) was significantly correlated to the Primacy model expectation term (bE), which reflects

the relationship between mood and previous events (Figure 4B, cluster at the anterior cingulate cor-

tex [ACC] and ventromedial prefrontal cortex [vmPFC] regions, n = 56, peak beta = 44.80, t = 3.37
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and p = 0.0017, which corrects to p<0.05, first by using the 3dClustSim in AFNI software [Analysis of

Functional NeuroImages] with an autocorrelation function [ACF] resulting in p = 0.005 and a minimal

cluster size of 100 voxels followed with a Bonferroni correction since we compared three different

models, reaching p = 0.005/3 = 0.0017). By contrast, both Recency models’ individual parameters

showed no significant relation to neural activity. To formally compare between the two models in

their relationship to brain activity, we contrasted the two voxel-wise correlation images, that is, the

BOLD signal correlation across participants with the Primacy model individual weights bE (coeffi-

cients of the expectation term) versus BOLD signal correlation with the Recency models bE . This

showed a significantly stronger relation of the Primacy model to neural activity, specifically in the

ACC and vmPFC regions (Figure 4C, t = 5.00, using the corrected threshold of p = 0.0017). This

result provides a possible neural underpinning specific to the Primacy model’s mathematical realiza-

tion of expectations and mood. Additionally, mood ratings were correlated to the preceding neural
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Figure 4. Neural correlates of the Primacy model. (A) Extracting individual whole-brain BOLD signal activation maps (bbrain) during the time interval

preceding each mood rating, and individual model parameters by fitting mood ratings with the Primacy model (bE ). (B) Correlation across participants

between the individual weights of the model expectation term, bE , and the individual voxel-wise neural activations. A significant cluster was received

with a peak at [–3,52,6], size of 132 voxels, threshold at p = 0.0017 (after a multiple comparisons correction as well as a Bonferroni correction for the

three 3dMVM models we tested). Below, the resulting cluster of significant correlation is presented aligned on the Automated Anatomical Labeling

(AAL) brain atlas for spatial orientation (focus point of the image is at [–7.17,50,4.19], which is located in the ACC region). (C) A statistical comparison

between the relation of brain activation to the Primacy versus the Recency models. We compared the regression coefficients of the correlation between

participants’ brain activation and the Primacy expectation term weights versus the regression coefficients of the relation to the Recency model

expectation term (see Figure 4—figure supplement 1 for the two images before thresholding and before contrasting against each other). This

contrast showed a significantly stronger relation of the Primacy model expectation weight to brain signals at [–11,49,9], extending to a cluster of 529

voxels (p = 0.0017). See Materials and methods for a link to the online repository from where the neural analyses scripts and the presented images can

be downloaded.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Uncorrected raw data neural correlates of the Primacy model and two Recency models, the original one and the one with the
most similar characteristics to the Primacy model (with both dynamic win probability and elimination of the Certain term).

Figure supplement 2. Mood encoding at the whole-brain level in the structured-adaptive task: mood encoding values are derived using the mood
ratings as the parametric linear modulator of the BOLD signals during the pre-rating interval (at this interval, which lasts between 2.5 and 4 s,
participants are presented with the mood question, but cannot rate their mood yet).
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activity level in the striatum during the structured-adaptive task (Figure 4—figure supplement 1), in

congruence with previous accounts of mood relations to striatal activity in the random task design.

Discussion
A fundamental assumption about how humans report on their mood is that they integrate over the

history of their experiences. In this paper, we sought to test this assumption and establish the tem-

poral structure of this integration.

We show that when humans report on their momentary mood, they do indeed integrate over

past events in the environment. However, we find no support for the commonly assumed recency

model of integration, that is, for the assumption that most recent events matter the most in this inte-

gration. Instead, we find several lines of evidence to support a primacy model of the integration of

past experiences in mood reports.

The first line of evidence comes from comparing the primacy, the recency, and several other mod-

els in a probabilistic task that has been widely used in the past to influence subjective mood reports.

This version of the probabilistic task presents participants with random RPE values (Rutledge et al.,

2014). The model comparison, conducted using errors of within-subject prospective prediction of

consecutive mood ratings, indicated that a primacy model, that is, a model that places greater and

long-lasting emphasis on early events, described mood ratings the best. The Primacy model also

outperformed several other plausible models, including an extended model that allowed other tim-

ing of previous events to be most influential, as well as models resulting from modifications of the

Recency model (where terms were excluded or replaced by alternative task values).

We then sought to test whether our findings generalized beyond a random reward environment.

We did so in order to emulate real-life situations where negative or positive events tend to cluster

over periods of time, such as a conversation between two people that can include consistently pleas-

ant (or unpleasant) events throughout the interaction time frame. We did this by adapting the proba-

bilistic task in two different ways. First, by introducing blocks of predetermined consecutively

negative or positive RPEs. In this structured environment, the Primacy model outperformed the alter-

native Recency models. We also modified the probabilistic task in another way, namely by introduc-

ing a PI control algorithm. This created a structured-adaptive task, with a block of consecutively

negative or positive RPEs that were, however, tailored in real time to each individual’s initial mood

level and mood response, to maximize the influence of these events (such as when we modify our

tone of speech in real time during a conversation, e.g., according to who we are interacting with

and the response we aim for). The Primacy model clearly outperformed the alternative recency mod-

els also in this task.

It is conceivable that what appears to be a primacy effect is actually due to longer-lasting effects

of, say, positive RPEs on mood—this could be particularly exacerbated in the structured-adaptive

task. However, since our result was also robust in a random task design, as well as when testing a

model with a varying time window parameter that considered different number of previous trials

(tmax, see Figure 3—figure supplement 2), we do not find evidence for the block valence order to

account for the better performance of the Primacy model. In addition, the interaction between indi-

vidual behavior and the controller in the structured-adaptive environment could raise interpretative

difficulties. Therefore, it is important that the Primacy model also fit better in the structured and ran-

dom tasks, where the tasks did not respond to individual differences in responsiveness to RPEs. Yet,

it is possible that this is a contribution to the fact that the advantage of the Primacy model over the

Recency models is greater in the structured-adaptive task. There may also be additional mechanisms

at play in the structured-adaptive task such as hedonic extinction towards RPEs that explain some of

the increased performances of the Primacy model compared to the Recency model in this task.

We then also sought to test whether our findings generalized across two important variables.

One such variable is age. Substantial evidence shows that adolescence is a time when levels of self-

reported mood can change dramatically, for example, through overall increases in the levels of

depression (Heller and Casey, 2016; Maciejewski et al., 2015; Ronen et al., 2016; Stringaris and

Goodman, 2009). Also, adolescence marks a time when reward processing appears to be different

to that of adulthood with reported increases in the sensitivity of mood (Braams et al., 2015;

Casey et al., 2010; Heller and Casey, 2016; Kayser et al., 2015; Somerville et al., 2010;
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Walker et al., 2017). Our primacy model fitted better than the recency alternative in both adoles-

cent and adult samples.

The other variable is subjects’ depression. Its importance is twofold. First, the self-evident fact

that persons with depression report a lower mood than non-depressed persons, this is the case in

clinical but also in the experimental task setting we and others have used (Rutledge et al., 2017).

This difference in mean scores could be reflecting a different way in which persons with depression

report on their mood. In keeping with this, the integration of experiences could be happening in a

different temporal structure. The second reason is that persons with depression are thought to dis-

play reward processing aberrations (Keren et al., 2018; Ng et al., 2019; Stringaris et al., 2015;

Whitmer et al., 2012)—for example, in the form of being less sensitive to rewards or learning less

from them—that could impact the way in which they integrate across environmental experiences.

We address this question specifically in adolescents, the time of a sharp increase in depression inci-

dence (Beesdo et al., 2009), and find no evidence that depressed adolescents applied a different

model to the one that their non-depressed counterparts did. Moreover, also adult participants with

high scores of depression showed that the Primacy model is a better account of their mood reports.

These findings strongly suggest that the temporal representation of experiences offered by the

model is robust to important personal characteristics.

A formal comparison between the relation of brain activation to the Primacy versus the Recency

mood models was conducted. We link the Primacy model to neural activity by a correlation between

the model parameters and neural activation at the time preceding mood ratings. Specifically, we

show that individual activation at the ACC and vmPFC is correlated to the weight of the expectation

parameter of the Primacy model, but not the Recency model. These regions are implicated in mood

regulation (Bush et al., 2000; Etkin et al., 2015; Etkin et al., 2011; Hiser and Koenigs, 2018;

Rudebeck et al., 2014; Stevens et al., 2011; Zald et al., 2002) and in underlying decision making

relative to previous outcomes (Behrens et al., 2007; Scholl et al., 2017; Scholl et al., 2015;

Wittmann et al., 2016). Activity in these regions increased as the weight of the expectation parame-

ter ( bE) of an individual was higher. Since the weight of this parameter determines the influence of

previous outcomes on mood, this result suggests that these regions’ activity plays a role in mediat-

ing the integration of previous outcomes to a subjective mood report. Therefore, the strength of

this model-based fMRI analysis (Cohen et al., 2017; O’Doherty et al., 2007) is in allowing us to link

neural signals to the computational relation between previous experiences and subjective mood

reports.

Importantly, Vinckier et al., 2018 also reported the mvPFC region as positively correlated in its

activity level to changes in mood ratings, supporting the role that our model suggests for the mvPFC

region in mediating mood ratings according to a primacy weighting of previous events. We did not

find, however, the negative neural correlations to mood ratings that were also reported by that

study.

Our experiments examine only a short space of time, no longer than 40 min. Human experiences

are undoubtedly integrated over longer time periods, including temporally distant events in child-

hood. Whilst these are inherently difficult to model experimentally, it is noteworthy that early-life

experiences, such as early adversity, are thought to exert long-term influences on mood

(Douglas et al., 2010; Lewis-Morrarty et al., 2015; Raby et al., 2015). We also note that the time

scales of our experiments are congruous to a number of real-life situations, both in research and clin-

ical terms.

In research terms, self-reported mood in EMA is typically within the span of hours

(Kahneman et al., 2004; Larson et al., 1980; Taquet et al., 2020). Given that the goal of EMA is

often to uncover mood dynamics in relation to experiences in the environment, our results strongly

indicate that explicit modeling of the relative timing of these two variables to each other may be cru-

cial. Similarly, during fMRI and other scanning, researchers often ask participants to report on their

mood during these sessions and use these to relate to neuroimaging results. Our results suggest

that not just the value of events as such (whether, e.g., an aversive film was shown to participants),

but also when it was shown may differentially impact such reports.

In terms of clinical events—such as patients’ interactions with healthcare professionals for the pur-

poses of psychotherapy or medication treatment—these typically last for about an hour. Importantly,

the assessment of treatment progress relies on self-report (or clinician assessment of patients’
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reports). Our results suggest that timing of such reports in relation to experiences during treatment

could be an important source of variance.

Moreover, although our experiments test for different temporal structures of reward, they use a

single type of task, a simple gambling decision task. It might be that the temporal structure of mood

dependence is sensitive to the type of task or the context (i.e., social situations such as a conversa-

tion may include a different integration), which is an important matter for future studies. Another

potential caveat relates to the online data collection using the Amazon Mechanical Turk (MTurk)

platform, which can possibly include a different subset of participant characteristics (Ophir et al.,

2020), but importantly, our results were robust to this difference and were well-replicated in our lab-

based participants. In respect to the Primacy model characteristics, we aimed to minimize the diver-

gence from the existing Recency model (we therefore changed the expectation term to consider the

average of all previous outcomes but maintained the sum and the overall exponential discounting of

that term). This computational modification between the models reflected our hypothesis that

expectations in non-random temporal structures of rewards would be also influenced by the history

of previous outcomes. This modification then resulted in a Primacy weighting. Nevertheless, the bet-

ter performance of a Primacy weighting was consistent also when considering other formulations for

weighing of previous events (and without taking into account the fewer parameters of the Primacy

model).

Our results demonstrate that the Primacy model is superior to the Recency model, indicating that

the full history of prior events influences mood. However, inclusion of a recency-weighted outcomes

in the RPE term of the Primacy model prevents us from concluding simply that early events are more

important than recent events in the ultimate outcome of self-reported mood. We therefore also

note that when fitting the Primacy model the coefficients of the expectation term were significantly

larger than the coefficients of the RPE term (which include recency-weighted outcomes), supporting

the dominance of the expectation term primacy weighting (paired t-test with t = 2.6, p = 0.009, CI =

[0.008,0.059]).

Additionally, there may be alternative, mathematically equivalent formulations of these models

that would support different interpretations. Future work should compare the overall impacts of pri-

macy and recency effects on mood with approaches robust to reparameterization, such as analysis

of the causal effect of previous outcomes on mood using the potential-outcomes framework

(Imbens and Rubin, 2015).

Overall, our conclusion that the effect of outcomes on mood through expectations has a primacy

weighting in our tasks holds robustly when we consider a variety of different but similar models that

either have primacy weighting (Figure 3—figure supplement 2) or recency weighting (Table 1). All

the models with primacy weighting share that the expectation is based on an average over previous

outcomes or potential outcome values. We stress that the expectation itself does not have to have

primacy weighting for our conclusions to hold. The primacy model that we have chosen as our repre-

sentative primacy model (due to having superior or statistically indistinguishable performance over

the alternative primacy models) applies equal weights to all past outcomes to form the expectation,

but we have also tried models where the weighting within the expectation had higher weights for

more recent outcomes. In all these cases, the combination of current and past expectation still

results in a primacy-weighted aggregate effect of previous outcomes on mood. The dependence of

mood on an accumulation of previous expectations is therefore what causes the primacy weighting

as the initial outcomes have a larger influence on mood versus a smaller influence of past expecta-

tion terms. In an intuitive sense, the primacy effect represents the greater weight first experiences

have in a new environment or context, simply by virtue of coming first. The first event has nothing

against which it can be compared, the second event has only itself and the first; the third event can

be compared only against the first two, and so on, till eventually each additional event has a minimal

impact in the face of all the events that have come before. The more trials we experience, the more

information we gain, and the less meaning each event has on its own. This process has clear parallels

to learning, but our models are agnostic to the exact mechanism by which expectations are accumu-

lated. It is likely that there are equivalent formulations to our models in which expectation is a

learned parameter controlled by a learning rate. The details of this mechanism are certainly of inter-

est, but these will need to be elucidated by future studies.

More generally, our findings point to the importance of studying the temporal architecture of the

interplay between experiences and mood. So far, computational and theoretic accounts of mood
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have focused on event value (either in terms of expectations or outcomes or both) (Eldar et al.,

2016; Katsimerou et al., 2014; Russell et al., 1989; Rutledge et al., 2014; Vinckier et al., 2018;

Watson and Tellegen, 1985) as influences on subjective reports of well-being, while neglecting the

importance of time. Our results suggest that in addition to these influential properties of the envi-

ronment the dimension of time, that is, the temporal structure of previous events, also plays an

important role, and that rather than being a matter of what happened most recently, the temporal

representation of experience in mood seems to be dominated by a long-lasting effect of early

events.

Materials and methods

1. The Primacy versus Recency mood models
The formulation of both models consisted of two dynamic terms: the expectation term (E) and the

RPE term (R), which is the difference of the outcome relative to the expected value.

Specifically, the Recency model of mood at trial t (Mt) was defined as

Mt ¼ �t þM0þbC

X

t

j¼1

gt�jCjþbE

X

t

j¼1

gt�jEjþbR

X

t

j¼1

gt�jRj (6)

where �t is a random noise variate with some unknown distribution (we may assume it to be nor-

mal with mean 0 and standard deviation s), M0 is the participant’s baseline mood, g 2 0;1ð Þ is an

exponential discounting factor, Cj is the non-gamble certain amount at trial j (if not chosen then Cj =

0 and when chosen instead of a gamble then Ej = Rj = 0), bC is the participant’s sensitivity to certain

rewards during non-gambling trials, bE is the participant’s sensitivity to expectation, and bR is the

sensitivity to surprise during gambles.

In this model, the expectation term at trial t (Et) was defined as the average between the two

gamble values (see Figure 1, Equation 2) and the RPE term, R, was defined as

Rt ¼ At �Et (7)

At being the trial outcome.

In the Primacy model, the expectation term was replaced by the average of all previous outcomes

(Figure 1, Equation 3) and R was defined similarly as shown in Equation 7. The overall Primacy

model for mood at trial t was

Mt ¼ �t þM0 þbE

X

t

j¼1

gt�jEj þbR

X

t

j¼1

gt�jRj (8)

where bE and bR are the participant’s sensitivity to previous outcomes and to how surprising

these outcomes are relative to expectation, respectively. Note that this model performed better

when we did not distinguish between gambling and non-gambling trials, which was another diver-

gence from the standard Recency model.

2. Model fitting
All models were fit using a TensorFlow package (code can be downloaded using the link provided in

Section 6). We chose group regularization constants by creating simulated datasets with realistic

parameters and selecting the regularization parameters from a grid that had the best performance.

The grid consisted of powers of 10 from 0.001 to 10,000.

For optimization, we used the following generic parametric model across subjects:

M̂s tð Þ ¼ �sþ
X

p

v¼1

bv;s

X

t

j¼1

gt�j
s Xv;s jð Þ (9)

where s indexes the subject, Ms(t) is subject’s mood rating at trial t, ms is the subject-specific base-

line mood, v is one of p time-varying task variables X (e.g., expectation or RPE values at each trial j),

Keren et al. eLife 2021;10:e62051. DOI: https://doi.org/10.7554/eLife.62051 14 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.62051


and bv,s are subject-specific coefficients for each time-varying variable Xv,s (note that we constrain

b1,. . .,b3 � 0).

To facilitate optimization, we further re-parameterized the discount factor gs by defining

gs ¼
1

1þ exp ��sð Þ
(10)

so that �s is an unbounded real number.

We found that the use of group-level regularization was necessary in order to stabilize the esti-

mated coefficients. This took the form of imposing a variance penalty on � and on each coefficient

bv. The empirical variance is defined as

Var �ð Þ ¼
1

ns

X

ns

s¼1

�s� �
�� �2

(11)

where ns is the number of subjects, and �� is the group mean:

��¼
1

ns

X

ns

s¼1

�s (12)

We define Var(Xv) for v = 1,. . .,p likewise.

The objective function is therefore

minimize
X

ns

s¼1

X

t2T

M̂s tð Þ�Ms tð Þ
� �2

þl�Var �ð Þþlb
X

p

v¼1

Var bvð Þ (13)

where T is the set of trials where Ms(t) was defined (optionally, one can also discard the first few

trials in T to minimize window effects, we required t � 11), with lx = 10 and lb = 100 as the regulari-

zation parameters with the best performance in recovering the simulation ground truth for both

models.

A leave-out sample validation approach was used in all model fitting, where a subsample of 40%

randomly selected participants were modeled and then results were confirmed on the entire sample.

3. Testing the Primacy model across reward environments
The random task
Participants played a gambling task where they experienced a series of different RPE values while

rating their mood after every 2–3 trials. In this task, each trial consisted of a choice of whether to

gamble between two monetary values or receive a certain amount. RPE values were randomly modi-

fied (ranging between �2.5 to +2.5) by assigning random values to the two gambles and a 50%

probability for receiving one of these values as an outcome. The certain value was the average of

the two gamble values. Specifically, each trial consisted of three phases: (1) gamble choice: 3 s dur-

ing which the participants pressed left to get the certain value or right to gamble between two val-

ues (using a four-button response device); (2) expectation: only the chosen certain value or the two

gamble options remained on the screen for 4 s; and (3) outcome: a feedback of the outcome value

was presented for 1 s, followed by an inter-trial interval of 2–8 s. Participants completed 81 trials.

The mood rating consisted of two separate phases: (1) pre-rating mood phase, where the mood

question ‘How happy are you at this moment?’ was presented for a random duration between 2.5

and 4 s, while the option to rate mood was still disabled; and (2) mood rating by moving a cursor

along a scale labeled ‘unhappy’ on the left end and ‘happy’ on the right end. Each rating started

from the center of the scale, and participants had a time window of 4 s to rate their mood. The cur-

sor could move smoothly by holding down a single button press towards the left or the right direc-

tions. Each rating was followed by a 2–8 s jittered interval. Participants completed 34 mood ratings,

and the overall task lasted 15 min.

The structured task
In this version, participants experienced blocks of high or low RPE values, that is, patterns of positive

or negative events, where RPE values were predefined and identical for all participants. RPE values
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were set by a pre-made choice of the two gamble values and the outcome value, such that these val-

ues were random but RPE value, the difference between the average of the two values and the out-

come, resulted in a predefined value (positive blocks of RPE = +5 during the first and the third

blocks and a negative block in the middle of RPE = �5 during the second block). To maintain the

unpredictability of outcomes within a block in the latter fixed version, 30% of the trials were incon-

gruent to the block valence (i.e., small negative values of �1.5 during the first and third positive

blocks, and a positive value of +1.5 during the second negative block).

The certain value was the average between the two gamble values. To avoid a predictable pat-

tern of wins and losses, 30% of the trials were incongruent trials, where gamble and outcome values

resulted in the opposite valence of RPE to the block (negative during the first and third positive

blocks and positive during the middle negative block), but of a smaller value (RPE incongruent =

1.5). More specifically, the task consisted of three blocks, where each block had 27 trials and 11–12

mood ratings. Trials were identical to the random version in appearance. Participants again com-

pleted overall 34 mood ratings, and the overall task lasted 15 min.

The structured-adaptive task
The structured-adaptive version was designed to maximally influence mood upwards or downwards

by increasing or decreasing RPE values in real time. This task was identical to the structured task in

the block design and number of trials but differed in RPE values being calculated in real time using a

closed-loop control (PI algorithm used in control of nonlinear systems in engineering; Levine, 2011).

Specifically, following each mood rating, RPE values were increased or decreased according to the

difference of mood from the target mood, which was set to the highest mood value in the first and

third positive blocks and to the lowest mood during the second block. This setup therefore gener-

ated personalized ‘reward environments’ as the task values were calculated online according to indi-

vidual mood response and were not predetermined as in conventional paradigms.

More specifically, in each iteration of mood rating, the current mood, M(t), was compared to the

block mood target value (MT), which was set prior to the task in the aim to generate maximal mood

transitions. Mood target value was defined as the maximal mood value on the mood scale in first

and third blocks and the minimal mood value during the second block. To bring the mood value as

close as possible to the target value MT, the algorithm aimed at minimizing the error between the

rated mood and the target mood value (ME).

MEðtþ 1Þ ¼

MT �MðtÞ

mmax �Mmin

; MT ¼ 100% of mood scale

MðtÞ�MT

mmax �Mmin

; MT ¼ 0% of mood scale

8

>

>

>

<

>

>

>

:

(14)

The resulting ME value was between 0 and 1, then mapped to a change in the task RPE value,

using a PI controller algorithm. This control algorithm uses a proportional and an integral error term

derived from ME . Importantly, the integral error term enables an RPE modification when mood

remains in the same distance from the target mood value, and it was reset for each block.

Next, the RPE value was calculated such that the larger the mood error the stronger the modifica-

tion of the RPE value, as follows:

RPEðtþ 1Þ ¼

RPEbaseline*MEðtÞþ
X

t

1

ME; Congruent trial

RPEbaseline*MEðtÞþ

X

t

1

ME

3
; Incongruent trial

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(15)

where RPEbaseline is a fixed value that was pre-calibrated to the value of 14 points (to have a mod-

erate yet efficient influence of RPE change on mood). Congruent trials were 70% of trials, aligned

with the control algorithm direction; the remaining 30% were incongruent, providing an RPE value

with the opposite sign to the block context (set to be smaller in amplitude: on average, incongruent

RPE values were �1.5 ± 0.8 SD). Then the two gamble values were calculated for the next 2–3 trials

as follows:
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Lðtþ 1Þ ¼Hðtþ 1Þ�RPEðtþ 1Þ (16)

where H was the higher value, randomly assigned from a list ranging between [�1.5,14] with a

step size of 0.2, and L is the lower gamble outcome. The allocation of these values between the

upper or lower squares on the screen was randomly assigned.

The certain value (CR) that appeared on the left side was set to the average between the two val-

ues (unless this resulted in a certain value higher than two points, in which case it was half of the

lower value L(t + 1)).

Last, the outcome value (A) was assigned according to the block H(t + 1) in 70% of the first and

third positive blocks trials, and L(t + 1) during 70% of the second block trials (and vice versa in the

30% of trials that were incongruent).

This closed-loop circuit continued throughout the task, with each new mood rating used to

update the reward values for the next series of 2–3 trials.

In all above task designs, participants were not informed of the probability of winning the gam-

ble. We probed whether participants noticed that the win probability was rigged between blocks in

the structured and structured-adaptive tasks with a follow-up questionnaire, which showed that most

participants (90%, 65/72) were unaware of the manipulation (in a scale between 0 and 3, the average

rating for whether the task was unfair was 0.36 ± 0.69 SD with 7/72 subjects indicating ‘agree’ or

‘strongly agree’).

Participants
Participants completed either the random task (n = 60, mean age ± SD = 39.81 ± 13, 44% females),

the structured task (n = 89, mean age ± SD = 37.55 ± 10.46, 44% females), or the structured-adap-

tive task (n = 80, mean age ± SD = 37.76 ± 11.23, 42% females). See Table 2 for participants

characteristics.

These participants were recruited from Amazon Mechanical Turk (MTurk) system and completed

the tasks online. Analyses of this structured-adaptive dataset were publicly preregistered on an

open science online repository to confirm our modeling results (https://osf.io/g3u6n/). The MTurk

Worker ID was used to distribute a compensation of $8 for completing the task and a separate task

bonus between $1 and $6 according to the points gained during the task. Participants were

instructed before the task that they would receive a payment that is proportional to the points that

they gain during the task. These study populations were ordinary, non-selected adults of 18 years of

age or older. Participants were not screened for eligibility, all individuals living in the US and who

wanted to participate were able to do so. Participants were restricted to doing the task just once.

Three participants were excluded from analyses due to an error in the task script where mood rat-

ings were inconsistently spread along the three blocks. All participants received similar scripted

instructions and provided informed consent to a protocol approved by the NIH Institutional Review

Board.

Statistical testing of the influence of reward environments on mood
We applied a linear mixed effects model to estimate the task influence on mood using the nlme

package in RStudio (2020). This model enabled the estimation of the across-participants significance

of mood change while controlling for the within-participant variability in mood change slopes and

intercepts, defined as random effects. Specifically, the independent variable was the response vari-

able of interest mood (M), and the dependent variables were time (t, which is the trial index) and

time squared (t2), with the two different time variables considered as random effects, as follows:

M~ tþ t2þðtþ t2jsubjectÞ (17)

The effect was considered significant with p<0.05. All t-tests conducted were two-sided.

4. Testing the Primacy model across participant characteristics and
neural signals
An additional dataset of the structured-adaptive task was collected in an fMRI scanner, providing us

with different experimental conditions, a different age group of adolescent participants, data of
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participants diagnosed with depression, and a recording of neural signals during the task (n = 72,

mean age ± SD = 15.49 ± 1.48, 76% females, mean depression score MFQ ± SD = 5.81 ± 5.98, n =

43 participants met diagnostic criteria for depression according to DSM-5, of whom at the time of

the experiment n = 18 had an ongoing depressive episode and n = 35 were medicated). See Table 2

for participants characteristics. These participants completed the task in an fMRI scanner and were

compensated for doing the task and for scanning, as well as receiving a separate bonus proportional

to the points earned during the task (a value between $5 and $35). This task version lasted 24 min

instead of the duration of 15 min of the online versions to allow for an optimal analysis of brain data.

Participants were screened for eligibility, and inclusion criteria were the capability to be scanned in

the MRI scanner and not satisfying diagnosis criteria for disorders other than depression according

to DSM-5. Overall, five participants were excluded from analyses due to incomplete data files, and

three additional participants were excluded due to repeatedly rating a single fixed mood value for

an entire block of the task. These participants received the same scripted instructions and provided

informed consent to a protocol approved by the NIH Institutional Review Board.

Table 2. Participants’ demographics for all datasets.

Random online MTurk sample Age

(n = 67) Average 39.81

SD 13

Sex

Male 37

Female 32

Structured online MTurk sample Age

(n = 89) Average 37.55

SD 10.46

Sex

Male 48

Female 41

Structured-adaptive online MTurk sample Age

(n = 80) Average 37.76

SD 11.23

Sex

Male 46

Female 34

Structured-adaptive lab-based sample Age

(n = 72) Average 15.49

SD 1.48

Sex

Male 17

Female 55

MFQ score

Average 5.81

SD 5.98

Diagnosis

Healthy volunteer 29

MDD 43

Keren et al. eLife 2021;10:e62051. DOI: https://doi.org/10.7554/eLife.62051 18 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.62051


5. Analyzing the neural correlates of the Primacy model
fMRI data acquisition
Participants in the adolescent sample performed the structured-adaptive task while scanning in a

General Electric (Waukesha, WI) Signa 3-Tesla MR-750s magnet, being randomly assigned to one of

two similar scanners. Task stimuli were displayed via back-projection from a head-coil-mounted mir-

ror. Foam padding was used to constrain head movement. Behavioral choice responses were

recorded using a hand-held Fiber Optic Response Pad (FORP). 47 oblique axial slices (3.0 mm thick-

ness) per volume were obtained using a T2-weighted echo-planar sequence (echo time, 30 ms; flip

angle, 75˚; 64 � 64 matrix; field of view, 240 mm; in-plane resolution, 2.5 mm � 2.5 mm; repetition

time was 2000 ms). To improve the localization of activations, a high-resolution structural image was

also collected from each participant during the same scanning session using a T1-weighted stan-

dardized magnetization prepared spoiled gradient recalled echo sequence with the following

parameters: 176 1 mm axial slices; repetition time, 8100 ms; echo time, 32 ms; flip angle, 7˚; 256 �

256 matrix; field of view, 256 mm; in-plane resolution, 0.86 mm � 0.86 mm; NEX, 1; bandwidth, 25

kHz. During this structural scanning session, all participants watched a short neutral-mood documen-

tary movie about bird migration.

Data preprocessing
Analysis of fMRI data was performed using Analysis of Functional and Neural Images (AFNI;

Cox, 1996) software (version 19.3.14). Standard preprocessing of EPI data included slice-time cor-

rection, motion correction, spatial smoothing with a 6 mm full-width half-maximum Gaussian

smoothing kernel, normalization into Talairach space and a 3D nonlinear registration. Each partici-

pant’s data were transformed to a percent signal change using the voxel-wise time-series mean

blood oxygen-level-dependent (BOLD) activity. Time series were analyzed using multiple regression

(Neter et al., 1990), where the entire trial was modeled using a gamma-variate basis function. The

model included the following task phases: gamble choice: an interval that lasted up to 3 s, from the

presentation of the three monetary values to the choice button press, left for the certain amount or

right to gamble. Expectation: a 4 s interval from making the choice of whether to gamble to receiv-

ing the gamble outcome. Outcome: a 1 s interval during which the received outcome is shown. The

pre-rating interval: a variable interval between 2.5 and 4 s when the mood question is presented but

the option to rate mood is still disabled. Mood rating phase: a 4 s interval during which participants

rate their mood. The model also included six nuisance variables modeling the effects of residual

translational (motion in the x, y, and z planes), rotational motion (roll, pitch, and yaw), and a regres-

sor for baseline plus slow drift effect, modeled with polynomials (baseline being defined as the non-

modeled phases of the task). Echo-planar images (EPIs) were visually inspected to confirm image

quality and minimal movement. The code for generating the full processing stream for each partici-

pant was created using the afni_proc.py command. This script creates also a quantitative and quali-

tative quality control (QC) outputs, which were used to verify the processing in the present study.

We then ran a whole-brain, group-level ANOVA (3dMVM [Chen et al., 2014] in AFNI) with the

weights of the Primacy or the Recency model as between-participant covariates of each of these

neural activations (each participant’s neural activity was represented by a single whole-brain image

of activation across all trials).

Statistical significance
This was determined at the group level using 3dClustSim (the latest acceptable version in AFNI with

an ACF model), which generated a corrected to p<0.05 voxel-wise significance threshold of p<0.005

and a minimal cluster size of 100 voxels. We analyzed relation to model parameters with neural activ-

ity during three different phases of the task: activation during the pre-mood rating period, mood rat-

ing encoding (with mood values as a parametric regressor of the mood pre-rating period), and task-

based RPE encoding (RPE values as a parametric regressor of the outcome period). Since these are

three separate tests, we added a Bonferroni correction to the multiple comparison correction, which

resulted in a final p-value threshold of 0.005/3 = 0.0017.
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6. Code and data availability
To enable the reproducibility of this study we made all scripts and datasets available online at:

https://osf.io/vw7sz. This online repository includes the scripts for modeling the mood data, the

source-data of Figure 2 (tasks and mood rating data of all participants), the afni_proc and 3dMVM

neural analysis scripts and the whole-brain neural images presented in Figure 4. All the unprocessed

neuroimaging data can be found online at: https://openneuro.org/datasets/ds003709.
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